6.3 Binomial Random Variables continued

 \#79, 81, 8379. a. $P(X=17)=\binom{20}{17}(.85)^{17}(.15)^{3}=0.2428$
b. $P(X<12)=\binom{20}{0}(.85)^{0}(.15)^{20}+\ldots\binom{20}{12}(.85)^{12}(.15)^{8}$
$=0.0059$. This is low. Judy should be suspicious.
80. a. $\mu_{x}=15(0.20)=3$

If we watched the machine make sets of 15 calls, we would expect about 3 calls to reach a live person, on average.
b. $\sigma_{x}=\sqrt{15(0.20)(0.80)}$
$=1.55$. If we watched the machine make many sets of 15 calls, we would expect the number of calls that reach a live person to typically vary by about 1.55 from the mean of 3 .
83. a. $\mu_{y}=15(0.80)=12$

Notice that $\mu_{x}=3 \ldots$ and $12+3=15$ (total \# of calls)

$$
\text { b. } \begin{aligned}
\sigma_{y} & =\sqrt{15(0.80)(0.20)} \\
& =1.55
\end{aligned}
$$

This is the same value as σ_{x} because $Y=15-X$ and adding a constant to a random variable doesn't change the spread.

