Square Roots

A square root of a number is a number that, when multiplied by itself, equals the given number. Every positive number has a positive and a negative square root. A perfect square is a number with integers as its square roots.

Example 1 Find the two square roots of 64.

$$8 \cdot 8 = 64 \text{ and } -8 \cdot (-8) = 64$$

So, the square roots of 64 are 8 and -8.

The symbol $\sqrt{\ }$ is called a radical sign. It is used to represent a square root. The number under the radical sign is called the radicand.

Example 2 Find the square root(s).

a.
$$\sqrt{49}$$

Because
$$7^2 = 49$$
, $\sqrt{49} = \sqrt{7^2} = 7$.

b.
$$-\sqrt{\frac{1}{4}}$$

b.
$$-\sqrt{\frac{1}{4}}$$

Because $(\frac{1}{2})^2 = \frac{1}{4}, -\sqrt{\frac{1}{4}} = -\sqrt{(\frac{1}{2})^2} = -\frac{1}{2}.$

c.
$$\pm \sqrt{1.21}$$

Because
$$1.1^2 = 1.21$$
, $\pm \sqrt{1.21} = \pm \sqrt{1.1^2} = \pm 1.1$.

Example 3 Evaluate $3\sqrt{144} - 10$.

$$3\sqrt{144} - 10 = 3(12) - 10$$

Evaluate the square root.

$$= 36 - 10$$

Multiply.

$$= 26$$

Subtract.

Practice

Check your answers at BigIdeasMath.com.

Find the two square roots of the number.

Find the square root(s).

5.
$$\sqrt{4}$$

6.
$$-\sqrt{81}$$

7.
$$\pm \sqrt{900}$$

8.
$$\pm \sqrt{\frac{1}{36}}$$

9.
$$\sqrt{\frac{4}{9}}$$

10.
$$-\sqrt{\frac{36}{25}}$$

11.
$$\sqrt{2.25}$$

12.
$$\pm \sqrt{0.01}$$

Evaluate the expression.

13.
$$\sqrt{10+6}$$

14.
$$4 - 2\sqrt{9}$$

15.
$$12 - \sqrt{\frac{98}{2}}$$

15.
$$12 - \sqrt{\frac{98}{2}}$$
 16. $4(2\sqrt{25} + 3)$

17. PERIMETER What is the perimeter of a square with an area of 900 square feet?

18. DIAMETER What is the diameter of a circle with an are of 100π square yards?