In Exercises 15-40, solve the equation (if possible) and check your solution.

15.
$$2(x + 5) - 7 = 3(x - 2)$$

16.
$$2(13t - 15) + 3(t - 19) = 0$$

17.
$$\frac{5x}{4} + \frac{1}{2} = x - \frac{1}{2}$$

18.
$$\frac{x}{5} - \frac{x}{2} = 3$$

19.
$$0.25x + 0.75(10 - x) = 3$$

20.
$$0.60x + 0.40(100 - x) = 50$$

21.
$$x + 8 = 2(x - 2) - x$$

22.
$$3(x + 3) = 5(1 - x) - 1$$

23.
$$\frac{100-4u}{3}=\frac{5u+6}{4}+6$$

24.
$$\frac{17+y}{y} + \frac{32+y}{y} = 100$$

$$25. \ \frac{5x-4}{5x+4} = \frac{2}{3}$$

25.
$$\frac{5x-4}{5x+4} = \frac{2}{3}$$
 26. $\frac{10x+3}{5x+6} = \frac{1}{2}$

27.
$$10 - \frac{13}{x} = 4 + \frac{5}{x}$$
 28. $\frac{15}{x} - 4 = \frac{6}{x} + 3$

28.
$$\frac{15}{x} - 4 = \frac{6}{x} + 3$$

WELLY.

29.
$$\frac{1}{x-3} + \frac{1}{x+3} = \frac{10}{x^2-9}$$

30.
$$\frac{1}{x-2} + \frac{3}{x+3} = \frac{4}{x^2+x-6}$$

31.
$$\frac{x}{x+4} + \frac{4}{x+4} + 2 = 0$$

32.
$$\frac{2}{(x-4)(x-2)} = \frac{1}{x-4} + \frac{2}{x-2}$$

$$33. \ \frac{7}{2x+1} - \frac{8x}{2x-1} = -4$$

34.
$$\frac{4}{u-1} + \frac{6}{3u+1} = \frac{15}{3u+1}$$

35.
$$(x + 2)^2 + 5 = (x + 3)^2$$

36.
$$(x + 1)^2 + 2(x - 2) = (x + 1)(x - 2)$$

37.
$$(x + 2)^2 - x^2 = 4(x + 1)$$

38.
$$(2x + 1)^2 = 4(x^2 + x + 1)$$

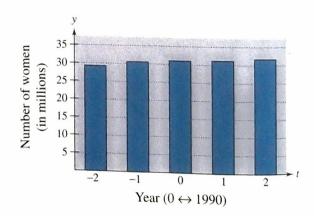
39.
$$4 - 2(x - 2b) = ax + 3$$

40.
$$5 + ax = 12 - bx$$

41. Exploration

(a) Complete the table.

x	-1	0	1	2	3	4
3.2x - 5.8						


- (b) Use the table in part (a) to determine the interval in which the solution to the equation 3.2x - 5.8 = 0 is located. Explain your reasoning.
- (c) Complete the table.

x	1.5	1.6	1.7	1.8	1.9	2
3.2x - 5.8						

- (d) Use the table in part (c) to determine the interval in which the solution to the equation 3.2x - 5.8 = 0 is located. Explain how this process can be used to approximate the solution to any desired degree of accuracy.
- **42.** Using a Model The number of married women y in the civilian work force (in millions) in the United States from 1988 to 1992 can be approximated by the model

$$y = 0.43t + 30.86$$

where t = 0 represents 1990 (see figure). According to this model, during which year did this number reach 30 million? Explain how to answer the question graphically and algebraically. (Source: U.S. Bureau of Labor Statistics)

