- 57. Vertical Motion The velocity of a ball thrown vertically upward from ground level is given by v(t) = -32t + 48, where t is the time in seconds and v is the velocity in feet per second.
 - (a) Find the velocity when t = 1.
 - (b) Find the time when the ball reaches its maximum height. [*Hint*: Find the time when v(t) = 0.]
 - (c) Find the velocity when t = 2.
- **58.** *Dimensions of a Rectangle* A wire 24 inches long is to be cut into four pieces to form a rectangle with one side of length x.
 - (a) Express the area *A* of the rectangle as a function of *x*.
 - (b) Determine the domain of the function and use a graphing utility to graph the function over that domain.
 - (c) Use the graph of the function to approximate the maximum area of the rectangle. Make a conjecture about the dimensions of the rectangle.

In Exercises 59–62, let f(x) = 3 - 2x, $g(x) = \sqrt{x}$, and $h(x) = 3x^2 + 2$. Find the indicated value.

59. $(f-g)(4)$	60. (<i>f h</i>)(1)
61. $(h \circ g)(7)$	62. $(g \circ f)(-2)$

In Exercises 63–66, (a) find f^{-1} , (b) sketch the graphs of f and f^{-1} in the same coordinate system, and (c) verify that $f^{-1}(f(x)) = x = f(f^{-1}(x))$.

63. $f(x) = \frac{1}{2}x - 3$	64. $f(x) = 5x - 7$
65. $f(x) = \sqrt{x+1}$	66. $f(x) = x^3 + 2$

In Exercises 67–70, find a mathematical model representing the statement. (In each case, determine the constant of proportionality.)

- 67. *F* is jointly proportional to *x* and the square root of *y*. (F = 6 when x = 9 and y = 4.)
- 68. R varies inversely as the cube of x. (R = 128 when x = 2.)
- 69. z varies directly as the square of x and inversely as y. (z = 16 when x = 5 and y = 2.)

- 70. w varies jointly as x and y and inversely as the cube of z. $(w = \frac{44}{9} \text{ when } x = 12, y = 11, \text{ and } z = 6.)$
- 71. Domestic Motor Fuel Consumption The table gives the average fuel consumption y in miles per gallon for cars in the United States at 5-year intervals from 1970 through 1990. The time in years is given by t, where t = 0 represents 1970. (Source: U.S. Highway Administration)

t	0	5	10	15	20
y	13.52	13.52	15.46	18.20	21.02

- (a) Find the least squares regression lines for the data.
- (b) Sketch a scatter plot of the data and graph the linear model you found in part (a) on the same set of axes.
- (c) Interpret the slope of each model in the context of the problem.
- (d) Use the model to estimate average fuel consumption for the year 2000.
- 72. Average Hourly Wage The table gives the average hourly wages (y_1) for workers in the mining industry and the average hourly wages (y_2) for workers in the construction industry in the United States for the years 1990 through 1993. The time in years is given by *t*, where t = 0 represents 1990. (Source: U.S. Bureau of Labor Statistics)

t	0	1	2	3
<i>y</i> ₁	\$13.68	\$14.18	\$14.51	\$14.60
<i>y</i> ₂	\$13.77	\$13.99	\$14.11	\$14.35

- (a) Find the least squares regression lines for mining wages versus time and construction wages versus time.
- (b) Sketch a scatter plot of the data and graph the linear models you found in part (a) on the same set of axes.
- (c) Interpret the slope of each model in the context of the problem.
- (d) Use the models to estimate the wages in each industry for the year 2000.

