Think About It In Exercises 3 and 4, use the graph to determine whether y varies directly as some power of x or inversely as some power of x. Explain.

4.

In Exercises 5–8, use the given value of k to complete the table for the direct variation model $y = kx^2$. Plot the points of a rectangular coordinate system.

x	2	4	6	8	10
$y = kx^2$					

5.
$$k = 1$$

6.
$$k = 2$$

7.
$$k = \frac{1}{2}$$

8.
$$k = \frac{1}{4}$$

In Exercises 9–12, use the given value of k to complete the table for the inverse variation model $y = k/x^2$. Plot the points on a rectangular coordinate system.

x	2	4	6	8	10
$y = \frac{k}{x^2}$					

9.
$$k = 2$$

10.
$$k = 5$$

11.
$$k = 10$$

12.
$$k = 20$$

In Exercises 13–16, determine whether the variation model is of the form y = kx or y = k/x and find k.

13.	x	5	10	15	20	25
	y	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$

15.	x	5	10	15	20	25
	у	-3.5	-7	-10.5	-14	-17.5

16.	x	5	10	15	20	25
	y	24	12	8	6	<u>24</u> 5

Direct Variation In Exercises 17–20, assume that y is proportional to x. Use the given x-value and y-value to find a linear model that relates y and x.

17.
$$x = 5$$
 $y = 12$

18.
$$x = 2$$
 $y = 14$

19.
$$x = 10$$
 $y = 2050$

20.
$$x = 6$$
 $y = 580$

- **21.** *Simple Interest* The simple interest on an investment is directly proportional to the amount of the investment. By investing \$2500 in a certain bond issue, you obtained an interest payment of \$187.50 at the end of 1 year. Find a mathematical model that gives the interest *I* for this bond issue at the end of 1 year in terms of the amount invested *P*.
- **22.** *Simple Interest* The simple interest on an investment is directly proportional to the amount of the investment. By investing \$5000 in a municipal bond, you obtained an interest payment of \$337.50 at the end of 1 year. Find a mathematical model that gives the interest *I* for this municipal bond at the end of 1 year in terms of the amount invested *P*.
- 23. *Property Tax* Property tax is based on the assessed value of the property. A house that has an assessed value of \$50,000 has a property tax of \$1840. Find a mathematical model that gives the amount of property tax *y* in terms of the assessed value *x* of the property. Use the model to find the property tax on a house that has an assessed value of \$85,000.
- **24.** *State Sales Tax* State sales tax is based on the retail price. An item that sells for \$145.99 has a sales tax of \$10.22. Find a mathematical model that gives the amount of sales tax *y* in terms of the retail price *x*. Use the model to find the sales tax on a \$540.50 purchase.