CUMULATIVE REVIEW EXERCISES (CHAPTERS 1–3)

Use the graph of y = f(x) to solve Exercises 1–6.

- 1. Find the domain and the range of f.
- 2. Find the zeros and the least possible multiplicity of each zero.
- 3. Where does the relative maximum occur?
- **4.** Find $(f \circ f)(-1)$.
- 5. Use arrow notation to complete this statement: $f(x) \rightarrow \infty$ as ____ or as ____
- 6. Graph g(x) = f(x + 2) + 1.

In Exercises 7–12, solve each equation or inequality.

7.
$$|2x - 1| = 3$$

8.
$$3x^2 - 5x + 1 = 0$$

9.
$$9 + \frac{3}{x} = \frac{2}{x^2}$$

10.
$$x^3 + 2x^2 - 5x - 6 = 0$$

11.
$$|2x - 5| > 3$$

12.
$$3x^2 > 2x + 5$$

In Exercises 13–18, graph each equation in a rectangular coordinate system. If two functions are given, graph both in the same system.

13.
$$f(x) = x^3 - 4x^2 - x + 4$$

14.
$$f(x) = x^2 + 2x - 8$$

15.
$$f(x) = x^2(x-3)$$

16.
$$f(x) = \frac{x-1}{x-2}$$

17.
$$f(x) = |x|$$
 and $g(x) = -|x| - 1$

18.
$$x^2 + y^2 - 2x + 4y - 4 = 0$$

In Exercises 19–20, let $f(x) = 2x^2 - x - 1$ and g(x) = 4x - 1.

19. Find
$$(f \circ g)(x)$$
.

20. Find
$$\frac{f(x+h) - f(x)}{h}$$
.