CHAPTER 4 TEST

1. Graph $f(x) = 2^x$ and $g(x) = 2^{x+1}$ in the same rectangular coordinate system.

2. Graph $f(x) = \log_2 x$ and $g(x) = \log_2(x - 1)$ in the same rectangular coordinate system.

3. Write in exponential form: $\log_5 125 = 3$.

4. Write in logarithmic form: $\sqrt{36} = 6$.

5. Find the domain: $f(x) = \ln(3 - x)$.

In Exercises 6-7, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator.

6.
$$\log_4(64x^5)$$

7.
$$\log_3\left(\frac{\sqrt[3]{x}}{81}\right)$$

In Exercises 8-9, write each expression as a single logarithm.

8.
$$6 \log x + 2 \log y$$

9.
$$\ln 7 - 3 \ln x$$

10. Use a calculator to evaluate $\log_{15} 71$ to four decimal places.

In Exercises 11-18, solve each equation.

11.
$$3^{x-2} = 9^{x+4}$$

12.
$$5^x = 1.4$$

13.
$$400e^{0.005x} = 1600$$

14.
$$e^{2x} - 6e^x + 5 = 0$$

15.
$$\log_6(4x-1)=3$$
 16. $2\ln(3x)=8$

16.
$$2 \ln(3x) = 8$$

17.
$$\log x + \log(x + 15) = 2$$

18.
$$ln(x-4) - ln(x+1) = ln 6$$

19. On the decibel scale, the loudness of a sound, D, in decibels, is given by $D = 10 \log \frac{I}{L}$, where I is the intensity of the sound, in watts per meter², and I_0 is the intensity of a sound barely audible to the human ear. If the intensity of a sound is $10^{12}I_0$, what is its loudness in decibels? (Such a sound is potentially damaging to the ear.)

In Exercises 20-22, simplify each expression.

20. $\ln e^{5x}$

21. $\log_b b$

22. log₆ 1

Use the compound interest formulas to solve Exercises 23–25.

- 23. Suppose you have \$3000 to invest. Which investment yields the greater return over 10 years: 6.5% compounded semiannually or 6% compounded continuously? How much more (to the nearest dollar) is yielded by the better investment?
- 24. How long, to the nearest tenth of a year, will it take \$4000 to grow to \$8000 at 5% annual interest compounded quarterly?
- 25. What interest rate, to the nearest tenth of a percent, is required for an investment subject to continuous compounding to double in 10 years?
- **26.** The function

$$A = 82.3e^{-0.004t}$$

models the population of Germany, A, in millions, t years after 2010.

a. What was the population of Germany in 2010?

b. Is the population of Germany increasing or decreasing? Explain.

c. In which year will the population of Germany be 79.1 million?

- 27. The 2010 population of Asia was 4121 million; in 2050, it is projected to be 5231 million. Write the exponential growth function that describes the population of Asia, in millions, t years after 2010.
- **28.** Use the exponential decay model, $A = A_0 e^{kt}$, to solve this exercise. The half-life of iodine-131 is 7.2 days. How long will it take for a sample of this substance to decay to 30% of its original amount? Round to one decimal place.