Rocket Launcher

30 trials

1. P(success in 1st 30) = $.85^{30}$

Summary... Multiplication rule for independent events (p. 328).

$$P(A \cap B) = P(A) \times P(B)$$

2. P(fails on 31st trial | first 30 successful) = 0.15

P(fails on 32nd trial or 31st | first 30 successful) = = .15 + (.85)(.15) = .2775

3. Given that the first 30 super igniters successfully launch rockets, is it reasonable to believe that the failur rate of the super ignitors is less than 15%? Explain.

probability of first 30 successful launches = . 85³⁰ = .0076. Since this probability is quite LOW, it is reasonable to believe that the failure rate is less than 15%.

^{*} Each time you attempt to ignite, there is a .15 probability of failure. Just like flipping heads on a coin is .5