Chapter 4

Chapter 4 Test (p. 229)

1.	x	2x + 4	у	
	-3	2(-3) + 4	-2	open
	-2	2(-2) + 4	0	
	-1	2(-1) + 4	2	
	-8	$\begin{array}{c c} & 4 & y \\ & -4 & \\ & -4 & \\ & -8 & \\ & -12 & \\ \end{array}$	8	× ×

	x	$\frac{1}{3}x - 1$	у
dot:	-1	$\frac{1}{3}(-1) - 1$	$-1\frac{1}{3}$
	0	$\frac{1}{3}(0) - 1$	-1
	3	$\frac{1}{3}(3) - 1$	0
	-		

The domain is all real numbers. The range is all real numbers.

2.	- 2 -	y)					
	-		2	4	6	8	10	12	x
	2-2-	, ,						-0-	

The domain is $0 \le x \le 12$ and the range is -2, -1, 0, 1.

3. y = mx + b

 $y = \frac{2}{5}x + (-7)$ The equation is $y = \frac{2}{5}x - 7$.

4.
$$m = \frac{-3-6}{3-0} = \frac{-9}{3}, or -3$$

 $y - y_1 = m(x - x_1)$
 $y - 6 = -3(x - 0)$
 $y - 6 = -3(x)$
 $y - 6 = -3x$
 $\frac{+6}{y} = \frac{+6}{-3x} + 6$
The equation is $y = -3x + 6$.
5. $y - y_1 = m(x - x_1)$

$$y - (-8) = 3(x - (-2))$$

$$y + 8 = 3(x + 2)$$

$$y + 8 = 3(x) + 3(2)$$

$$y + 8 = 3x + 6$$

$$-8 - 8$$

$$y = 3x - 2$$

The equation of the parallel line is y = 3x - 2.

6.
$$y = mx + b$$

 $1 = -4(1) + b$
 $1 = -4 + b$
 $\frac{+4}{5} = \frac{+4}{b}$

Using m = -4 and b = 5, the equation of the perpendicular line is y = -4x + 5.

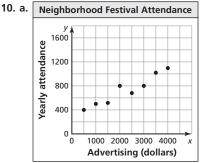
7.
$$y - y_1 = m(x - x_1)$$

 $y - 2 = 10(x - 6)$
The equation is $y - 2 = 10(x - 6)$.

8.
$$m = \frac{-1-2}{6-(-3)} = \frac{-1-2}{6+3} = \frac{-3}{9}$$
, or $-\frac{1}{3}$
 $y - y_1 = m(x - x_1)$ or $y - y_1 = m(x - x_1)$
 $y - 2 = -\frac{1}{3}(x - (-3))$ $y - (-1) = -\frac{1}{3}(x - 6)$
 $y - 2 = -\frac{1}{3}(x + 3)$ $y + 1 = -\frac{1}{3}(x - 6)$
The equation is $y - 2 = -\frac{1}{3}(x + 3)$ or $y + 1 = -\frac{1}{3}(x - 6)$.

9.
$$a_1 = 42$$
 and $d = 3$
 $a_n = a_1 + (n - 1)d$
 $a_n = 42 + (n - 1)(3)$
 $a_n = 42 + n(3) - 1(3)$
 $a_n = 42 + 3n - 3$
 $a_n = 3n + 39$
a. $a_n = 3n + 39$
a. $a_n = 3n + 39$
 $a_{25} = 3(25) + 39$
 $a_{25} = 114$
So, row 25 has 114 seats.
b. $a_n = 3n + 39$
 $90 = 3n + 39$
 $90 = 3n + 39$
 $51 = 3n$
 $\frac{51}{3} = \frac{3n}{3}$
 $17 = n$
So, row 17 has 90 seats.

Chapter 4



The scatter plot shows a positive correlation.

b. *Sample answer:* A line through (1000, 500) and (2000, 700) models the data.

The slope of the line is
$$m = \frac{700 - 500}{2000 - 1000} = \frac{200}{1000} = \frac{1}{5}$$

$$y - y_1 = m(x - x_1)$$

$$y - 500 = \frac{1}{5}(x - 1000)$$

$$y - 500 = \frac{1}{5}(x) - \frac{1}{5}(1000)$$

$$y - 500 = \frac{1}{5}x - 200$$

$$\frac{+500}{y} = \frac{+500}{5}$$

$$y = \frac{1}{5}x + 300$$

An equation of the line of fit is $y = \frac{1}{5}x + 300$.

- **c.** *Sample answer:* The slope of the line is $\frac{1}{5}$. This means that the yearly attendance at the festival increases by about 1 person for every \$5 spent on advertising. The *y*-intercept is 300, meaning that if no money is spent on advertising, about 300 people would attend the festival.
- **11. a.** After entering the data from the table into two lists using a graphing calculator, the *linear regression* feature yields the equation y = 0.19x + 309.
 - **b.** The correlation coefficient is about 0.943. This means that there is a strong positive correlation between the amount spent on advertising and the yearly attendance of the festival. So, the equation y = 0.19x + 309 closely models the data.
 - **c.** *Sample answer:* Because the data show a strong positive correlation and the line of best fit closely models the data, you would expect the scatter plot of the residuals to show a relatively even distribution of residuals on both sides of the *x*-axis.

d. There may be a casual relationship in the data but the correlation may be caused by other factors, such as the quality of the attractions each year.

e.
$$y = 0.19x + 309$$

 $2000 = 0.19x + 309$
 $\frac{-309}{1691} = 0.19x$

8900 = x

In order to get 2000 people to attend the festival, \$8900 should be spent on advertising.

12. Line 1:
$$y - c = ax$$

 $y - c + c = ax + c$
 $y = ax + c$
Line 2: $ay = -x - b$
 $\frac{ay}{a} = \frac{-x - b}{a}$
 $y = \frac{-1}{a}x - \frac{b}{a}$
Line 3: $ax + y = d$
 $ax - ax + y = d - ax$
 $y = d - ax$, or $y = -ax + d$

The slope of line 1 is *a*. The slope of line 2 is $-\frac{1}{a}$, which is the negative reciprocal of *a*. So, lines 1 and 2 are perpendicular. The slope of line 3 is -a, which is the opposite of *a* and the reciprocal of $-\frac{1}{a}$, but neither the same nor the negative reciprocal of either. So, line 3 is neither parallel nor perpendicular to the other two lines.

13. *Sample answer:*

$$f(x) = \begin{cases} -1, & \text{if } x \le -3\\ x, & \text{if } -3 < x \le 1\\ a, & \text{if } x > 1 \end{cases}$$

Chapter 4 Standards Assessment (pp. 230–231)

1. C;
$$d = 21 - 24 = -3$$

 $a_n = a_1 + (n - 1)d$
 $a_n = 24 + (n - 1)(-3)$
 $a_n = 24 + n(-3) - 1(-3)$
 $a_n = 24 - 3n + 3$
 $a_n = 27 - 3n$