Chapter 4

Chapter 4 Test (p. 229)

1.

\boldsymbol{x}	$\mathbf{2 x}+\mathbf{4}$	\boldsymbol{y}
-3	$2(-3)+4$	-2
-2	$2(-2)+4$	0
-1	$2(-1)+4$	2

\boldsymbol{x}	$\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{x}-\mathbf{1}$	\boldsymbol{y}	
open dot:	-1	$\frac{1}{3}(-1)-1$	$-1 \frac{1}{3}$
	0	$\frac{1}{3}(0)-1$	-1
3	$\frac{1}{3}(3)-1$	0	

The domain is all real numbers. The range is all real numbers.
2.

The domain is $0 \leq x \leq 12$ and the range is $-2,-1,0,1$.
3. $y=m x+b$
$y=\frac{2}{5} x+(-7)$
The equation is $y=\frac{2}{5} x-7$.
4. $m=\frac{-3-6}{3-0}=\frac{-9}{3}$, or -3
$y-y_{1}=m\left(x-x_{1}\right)$
$y-6=-3(x-0)$
$y-6=-3(x)$
$y-6=-3 x$

$$
\frac{+6}{y}=\frac{+6}{-3 x}+6
$$

The equation is $y=-3 x+6$.
5. $y-y_{1}=m\left(x-x_{1}\right)$
$y-(-8)=3(x-(-2))$
$y+8=3(x+2)$
$y+8=3(x)+3(2)$
$y+8=3 x+6$

$$
\frac{-8}{y}=3 x-2
$$

The equation of the parallel line is $y=3 x-2$.
6. $y=m x+b$
$1=-4(1)+b$
$1=-4+b$
$+\frac{+4}{5}=\frac{+4}{b}$
Using $m=-4$ and $b=5$, the equation of the perpendicular line is $y=-4 x+5$.
7. $y-y_{1}=m\left(x-x_{1}\right)$
$y-2=10(x-6)$
The equation is $y-2=10(x-6)$.
8. $m=\frac{-1-2}{6-(-3)}=\frac{-1-2}{6+3}=\frac{-3}{9}$, or $-\frac{1}{3}$

$$
\begin{array}{rlrlrl}
y-y_{1} & =m\left(x-x_{1}\right) & \text { or } & y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-\frac{1}{3}(x-(-3)) & & y-(-1) & =-\frac{1}{3}(x-6) \\
y-2 & =-\frac{1}{3}(x+3) & y+1 & =-\frac{1}{3}(x-6)
\end{array}
$$

The equation is $y-2=-\frac{1}{3}(x+3)$ or $y+1=-\frac{1}{3}(x-6)$.
9. $a_{1}=42$ and $d=3$
$a_{n}=a_{1}+(n-1) d$
$a_{n}=42+(n-1)(3)$
$a_{n}=42+n(3)-1(3)$
$a_{n}=42+3 n-3$
$a_{n}=3 n+39$
a. $a_{n}=3 n+39$
$a_{25}=3(25)+39$
$a_{25}=114$
So, row 25 has 114 seats.
b. $a_{n}=3 n+39$
$90=3 n+39$
$\frac{-39}{51}=3 n-39$
$\frac{51}{3}=\frac{3 n}{3}$
$17=n$
So, row 17 has 90 seats.

Chapter 4

10.

The scatter plot shows a positive correlation.
b. Sample answer: A line through $(1000,500)$ and $(2000,700)$ models the data.
The slope of the line is $m=\frac{700-500}{2000-1000}=\frac{200}{1000}=\frac{1}{5}$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-500 & =\frac{1}{5}(x-1000) \\
y-500 & =\frac{1}{5}(x)-\frac{1}{5}(1000) \\
y-500 & =\frac{1}{5} x-200 \\
+500 & \quad+500 \\
y & =\frac{1}{5} x+300
\end{aligned}
$$

An equation of the line of fit is $y=\frac{1}{5} x+300$.
c. Sample answer: The slope of the line is $\frac{1}{5}$. This means that the yearly attendance at the festival increases by about 1 person for every $\$ 5$ spent on advertising. The y-intercept is 300 , meaning that if no money is spent on advertising, about 300 people would attend the festival.
11. a. After entering the data from the table into two lists using a graphing calculator, the linear regression feature yields the equation $y=0.19 x+309$.
b. The correlation coefficient is about 0.943 . This means that there is a strong positive correlation between the amount spent on advertising and the yearly attendance of the festival. So, the equation $y=0.19 x+309$ closely models the data.
c. Sample answer: Because the data show a strong positive correlation and the line of best fit closely models the data, you would expect the scatter plot of the residuals to show a relatively even distribution of residuals on both sides of the x-axis.
d. There may be a casual relationship in the data but the correlation may be caused by other factors, such as the quality of the attractions each year.
e. $\quad y=0.19 x+309$
$2000=0.19 x+309$
$\frac{-309}{1691}=0.19 x^{\text {- } 309}$
$8900=x$
In order to get 2000 people to attend the festival, $\$ 8900$ should be spent on advertising.
12. Line 1: $y-c=a x$

$$
\begin{aligned}
y-c+c & =a x+c \\
y & =a x+c
\end{aligned}
$$

Line 2: $\quad a y=-x-b$

$$
\begin{aligned}
\frac{a y}{a} & =\frac{-x-b}{a} \\
y & =\frac{-1}{a} x-\frac{b}{a}
\end{aligned}
$$

Line 3: $a x+y=d$

$$
\begin{aligned}
a x-a x+y & =d-a x \\
y & =d-a x, \quad \text { or } \quad y=-a x+d
\end{aligned}
$$

The slope of line 1 is a. The slope of line 2 is $-\frac{1}{a}$, which is the negative reciprocal of a. So, lines 1 and 2 are perpendicular. The slope of line 3 is $-a$, which is the opposite of a and the reciprocal of $-\frac{1}{a}$, but neither the same nor the negative reciprocal of either. So, line 3 is neither parallel nor perpendicular to the other two lines.
13. Sample answer:
$f(x)= \begin{cases}-1, & \text { if } x \leq-3 \\ x, & \text { if }-3<x \leq 1 \\ a, & \text { if } x>1\end{cases}$
Chapter 4 Standards Assessment (pp. 230-231)

1. C; $d=21-24=-3$
$a_{n}=a_{1}+(n-1) d$
$a_{n}=24+(n-1)(-3)$
$a_{n}=24+n(-3)-1(-3)$
$a_{n}=24-3 n+3$
$a_{n}=27-3 n$
