Algebra 3 – 4 Chapter 12 Test You may use a calculator on this test.

Name_____

Formulas you may need are listed directly below.

$\sum_{i=1}^{n}$	$\sum_{i=1}^{n} i = \frac{1}{2} (n)(n+1)$		$\sum_{i=1}^n a_i = n \left(\frac{a_1 + a_n}{2} \right)$		$\sum_{i=1}^n i^2 =$	$=\frac{1}{6}(n)(n+1)(2n)$	+ 1)	
$\sum_{i=1}^{n}$	1 = n	$\sum_{i=1}^n a_1 r^{i-1}$	$= a_{1}\left(\frac{1-r^{n}}{1-r}\right)$	$\sum_{n=1}^{\infty} a_1 r^{n-1}$	$=\frac{a_1}{1-r}$	$\binom{n}{m} = \left(\frac{n!}{(n-m)!}\right)$	$\left(\frac{1}{m!}\right)$	
1.	Write the f a _n = n ² + 3.	irst five term Start with r	ns of n = 1.	2. Write th summat $\sum_{i=1}^{6} i!$	e series re ion notatio	epresented by the on, then evaluate the s	sum.	
3.	Find the ninth term of a arithmetic sequence with a common difference of -4 and a first term of 17.			4. Find the first four terms of an arithmetic sequence whose eighth term is 2 and nineteenth term is 101.				
5.	Evaluate the set of $\sum_{i=1}^{49} (2i - $	ne sum. 9)		 6. Write a figeometr 4, 6, 9, ²/₂ 	formula fo ic sequent 72 ,	or the nth term of the ce.		

Formulas you may need are listed here.

$\sum_{i=1}^{n} i = \frac{1}{2} (n)(n+1)$		$\sum_{i=1}^n a_i = n \left(\frac{a_1 + a_n}{2} \right)$		$\sum_{i=1}^{n} i^2 =$	$= \frac{1}{6} (n)(n+1)(2n+1)$			
$\sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^n a_i r^{i-1}$	$= a_{\rm l} \left(\frac{1 - r^n}{1 - r} \right)$	$\sum_{n=1}^{\infty} a_1 r^{n-1}$	$=\frac{a_1}{1-r}$	$\binom{n}{m} = \left(\frac{n!}{(n-m)! \ m!}\right)$			
7. Find the fo geometric ratio of ½ a	rmula for a _n sequence w and first tern	for a ith a common n of 8.	 Find the tenth term of a geometric sequence with a first term of 16 and a fourth term of 54. 					
9. Evaluate the $\sum_{n=0}^{5} 27 \left(\frac{2}{3}\right)$	he sum. \int_{0}^{n}		 10. Use summation notation to represent the sum. Use i as the index and begin with i = 1. 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 					
11. Classify ea sequences or Neither a) 4, 7, 10 b) 24, 12, c) -4, 4, -4 d) -42, -39	ch of the fol as Arithmet , 14, 17, 6, 3, 1, 4, -4, 4, 1, -36, -33, -3	lowing ic, Geometric, 0,	 12. Use summation notation to represent the sum. Use i as the index and begin with i = 1. 2 + 6 + 18 + 54 + 162 + 486 					
13. Evaluate the A. $\sum_{i=1}^{53} i$	13. Evaluate the sums. A. $\sum_{i=1}^{53} i$			 14. Write the first six terms of the geometric sequence with a₁ = 4 and r = ½ 				
B. $\sum_{i=1}^{24} i^2$			15. Find the common ratio of a geometric sequence with a third term of 64 and a seventh term of ¼.					