Chapter Review

Determine which of the lines, if any, are parallel or perpendicular. Explain.

- 6. Line *a* passes through (0, 4) and (4, 3). Line *b* passes through (0, 1) and (4, 0).
- 7. Line *a*: 2x 7y = 14Line *b*: $y = \frac{7}{2}x - 8$
- Line c passes through (2, 0) and (4, 4). Line c: 2x + 7y = -21
- **8.** Write an equation of the line that passes through (1, 5) and is parallel to the line y = -4x + 2.
- **9.** Write an equation of the line that passes through (2, -3) and is perpendicular to the line y = -2x 3.

4.4

4.5

Scatter Plots and Lines of Fit (pp. 195–200)

The scatter plot shows the roasting times (in hours) and weights (in pounds) of seven turkeys. Tell whether the data show a *positive*, a *negative*, or *no* correlation.

As the weight of a turkey increases, the roasting time increases.

• So, the scatter plot shows a positive correlation.

Use the scatter plot in the example.

- **10.** What is the roasting time for a 12-pound turkey?
- **11.** Write an equation that models the roasting time as a function of the weight of a turkey. Interpret the slope and *y*-intercept of the line of fit.

Height,

Х

64

Shoe

size, y

9

Analyzing Lines of Fit (pp. 201–208)

The table shows the heights *x* (in inches) and shoe sizes *y* of several students. Use a graphing calculator to find an equation of the line of best fit. Identify and interpret the correlation coefficient.

Step Step	1 Enter the data from the table into two lists.2 Use the <i>linear regression</i> feature.	LinReg y=ax+b a=.4989919355 b=-23.4828629 r ² =.9477256904 r=.9735120392		62 70 63	7 12 8
				72	13
	An equation of the line of best fit is $y = 0.50x - 23.5$. The correlation coefficient is about 0.974. This means that the relationship between the heights and the shoe sizes has a strong positive correlation and the equation closely models the data.			68	9.5
				66	9
				74	13.5
				68	10
12.	. Make a scatter plot of the residuals to verify that the model in the example is a good fit.			59	6.5
13.	Use the data in the example. (a) Approximate the height of a student whose				

- shoe size is 9. (b) Predict the shoe size of a student whose height is 60 inches.
- **14.** Is there a causal relationship in the data in the example? Explain.

4.6 Arithmetic Sequences (pp. 209–216)

Write an equation for the *n*th term of the arithmetic sequence $-3, -5, -7, -9, \ldots$. Then find a_{20} .

The first term is -3, and the common difference is -2.

 $a_n = a_1 + (n-1)d$ Equation for an arithmetic sequence $a_n = -3 + (n-1)(-2)$ Substitute -3 for a_1 and -2 for d. $a_n = -2n - 1$ Simplify.

Use the equation to find the 20th term.

 $a_{20} = -2(20) - 1$ Substitute 20 for *n*. = -41 Simplify.

The 20th term of the arithmetic sequence is -41.

Write an equation for the *n*th term of the arithmetic sequence. Then find a_{30} .

Piecewise Functions (pp. 217–224) Graph $y = \begin{cases} \frac{3}{2}x + 3, & \text{if } x \le 0\\ -2x, & \text{if } x > 0 \end{cases}$. Describe the domain and range. **Step 1** Graph $y = \frac{3}{2}x + 3$ for $x \le 0$. Because x is less than $y = \frac{3}{2}x + 3, x \le 0$ or equal to 0, use a closed circle at (0, 3). **Step 2** Graph y = -2x for x > 0. Because x is not equal to 0, y = -2x, x > 0use an open circle at (0, 0). -4 The domain is all real numbers. The range is $y \leq 3$. 2 **18.** Evaluate the function in the example when (a) x = 0and (b) x = 5. Graph the function. Describe the domain and range. **19.** $y = \begin{cases} x + 6, & \text{if } x \le 0 \\ -3x, & \text{if } x > 0 \end{cases}$ **20.** $y = \begin{cases} 4x + 2, & \text{if } x < -4 \\ 2x - 6, & \text{if } x \ge -4 \end{cases}$ Write the absolute value function as a piecewise function. **21.** y = |x| + 15**22.** y = 4|x + 5|**23.** y = 2|x + 2| - 3

24. You are organizing a school fair and rent a popcorn machine for 3 days. The rental company charges \$65 for the first day and \$35 for each additional day. Write and graph a step function that represents the relationship between the number x of days and the total cost y (in dollars) of renting the popcorn machine.