4.1 Writing Equations in Slope-Intercept Form (pp. 175-180)

Write an equation of the line in slope-intercept form.

Find the slope and y-intercept.
Let $\left(x_{1}, y_{1}\right)=(0,3)$ and $\left(x_{2}, y_{2}\right)=(3,5)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-3}{3-0}=\frac{2}{3}
$$

Because the line crosses the y-axis at $(0,3)$, the y-intercept is 3 .

So, the equation is $y=\frac{2}{3} x+3$.

1. Write an equation of the line in slope-intercept form.

4.2 Writing Equations in Point-Slope Form (pp. 181-186)

Write an equation in point-slope form of the line that passes through the point $(-1,-8)$ and has a slope of 3 .

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Write the point-slope form. } \\
y-(-8) & =3[x-(-1)] & & \text { Substitute } 3 \text { for } m_{1}-1 \text { for } x_{1}, \text { and }-8 \text { for } y_{1} . \\
y+8 & =3(x+1) & & \text { Simplify. }
\end{aligned}
$$

The equation is $y+8=3(x+1)$.
2. Write an equation in point-slope form of the line that passes through the point $(4,7)$ and has a slope of -1 .

Write a linear function f with the given values.
3. $f(10)=5, f(2)=-3$
4. $f(3)=-4, f(5)=-4$
5. $f(6)=8, f(9)=3$

4.3 Writing Equations of Parallel and Perpendicular Lines (pp. 187-192)

Determine which of the lines, if any, are parallel or perpendicular.
Line $a: y=2 x+3 \quad$ Line $b: 2 y+x=5 \quad$ Line $c: 4 y-8 x=-4$
Write the equations in slope-intercept form. Then compare the slopes.
Line $a: y=2 x+3$
Line $b: y=-\frac{1}{2} x+\frac{5}{2} \quad$ Line $c: y=2 x-1$
Lines a and c have slopes of 2 , so they are parallel. Line b has a slope of $-\frac{1}{2}$, the negative reciprocal of 2 , so it is perpendicular to lines a and c.

Determine which of the lines, if any, are parallel or perpendicular. Explain.
6. Line a passes through $(0,4)$ and $(4,3)$.

Line b passes through $(0,1)$ and $(4,0)$.
Line c passes through $(2,0)$ and $(4,4)$.
7. Line $a: 2 x-7 y=14$

Line $b: y=\frac{7}{2} x-8$
Line $c: 2 x+7 y=-21$
8. Write an equation of the line that passes through $(1,5)$ and is parallel to the line $y=-4 x+2$.
9. Write an equation of the line that passes through $(2,-3)$ and is perpendicular to the line $y=-2 x-3$.

4.4 Scatter Plots and Lines of Fit (pp. 195-200)

The scatter plot shows the roasting times (in hours) and weights (in pounds) of seven turkeys. Tell whether the data show a positive, a negative, or no correlation.

As the weight of a turkey increases, the roasting time increases.
So, the scatter plot shows a positive correlation.

Use the scatter plot in the example.
10. What is the roasting time for a 12 -pound turkey?
11. Write an equation that models the roasting time as a function of the weight of a turkey. Interpret the slope and
 y-intercept of the line of fit.

4.5 Analyzing Lines of Fit (pp. 201-208)

The table shows the heights x (in inches) and shoe sizes y of several students. Use a graphing calculator to find an equation of the line of best fit. Identify and interpret the correlation coefficient.

Step 1 Enter the data from the table into two lists.
Step 2 Use the linear regression feature.
LinReg
$y=a x+b$
$a=.4989919355$
$b=-23.4828629$
$r^{2}=.9477256904$
$r=.9735120392$

Height, \boldsymbol{x}	Shoe size, \boldsymbol{y}
64	9
62	7
70	12
63	8
72	13
68	9.5
66	9
74	13.5
68	10
59	6.5

12. Make a scatter plot of the residuals to verify that the model in the example is a good fit.
13. Use the data in the example. (a) Approximate the height of a student whose shoe size is 9. (b) Predict the shoe size of a student whose height is 60 inches.
14. Is there a causal relationship in the data in the example? Explain.

4.6 Arithmetic Sequences (pp. 209-216)

Write an equation for the nth term of the arithmetic sequence $-3,-5,-7,-9, \ldots$ Then find a_{20}.

The first term is -3 , and the common difference is -2 .

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \text { Equation for an arithmetic sequence } \\
a_{n}=-3+(n-1)(-2) & \text { Substitute }-3 \text { for } a_{1} \text { and }-2 \text { for } d . \\
a_{n}=-2 n-1 & \text { Simplify. }
\end{array}
$$

Use the equation to find the 20th term.

$$
\begin{aligned}
a_{20} & =-2(20)-1 & & \text { Substitute } 20 \text { for } n . \\
& =-41 & & \text { Simplify. }
\end{aligned}
$$

The 20th term of the arithmetic sequence is -41 .

Write an equation for the $\boldsymbol{n} \boldsymbol{t h}$ term of the arithmetic sequence. Then find $\boldsymbol{a}_{\mathbf{3 0}}$.
15. $11,10,9,8, \ldots$
16. $6,12,18,24, \ldots$
17. $-9,-6,-3,0, \ldots$

4.7 Piecewise Functions (pp. 217-224)

Graph $y=\left\{\begin{array}{ll}\frac{3}{2} x+3, & \text { if } x \leq 0 \\ -2 x, & \text { if } x>0\end{array}\right.$. Describe the domain and range.
Step 1 Graph $y=\frac{3}{2} x+3$ for $x \leq 0$. Because x is less than or equal to 0 , use a closed circle at $(0,3)$.
Step 2 Graph $y=-2 x$ for $x>0$. Because x is not equal to 0 , use an open circle at $(0,0)$.

The domain is all real numbers. The range is $y \leq 3$.
18. Evaluate the function in the example when (a) $x=0$ and (b) $x=5$.

Graph the function. Describe the domain and range.
19. $y= \begin{cases}x+6, & \text { if } x \leq 0 \\ -3 x, & \text { if } x>0\end{cases}$
20. $y= \begin{cases}4 x+2, & \text { if } x<-4 \\ 2 x-6, & \text { if } x \geq-4\end{cases}$

Write the absolute value function as a piecewise function.
21. $y=|x|+15$
22. $y=4|x+5|$
23. $y=2|x+2|-3$
24. You are organizing a school fair and rent a popcorn machine for 3 days. The rental company charges $\$ 65$ for the first day and $\$ 35$ for each additional day. Write and graph a step function that represents the relationship between the number x of days and the total cost y (in dollars) of renting the popcorn machine.

