Fill in each blank so that the resulting statement is true.

- 1. $\{a_n\} = a_1, a_2, a_3, a_4, \dots, a_n, \dots$ represents an infinite ______, a function whose domain is the set of positive _____. The function values a_1, a_2, a_3, \dots are called the _____.
- **2.** The *n*th term of a sequence, represented by a_n , is called the ______ term.

Write the second term of each sequence.

3.
$$a_n = 5n - 6$$

4.
$$a_n = \frac{(-1)^n}{4^n - 1}$$

5.
$$a_n = 2a_{n-1} - 4$$
, $a_1 = 3$

6. 5!, called 5 _____, is the product of all positive integers from ____ down through ____. By definition, 0! = ____.

7.
$$\frac{(n+3)!}{(n+2)!} =$$

8.
$$\sum_{i=1}^{n} a_i = \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \cdots + \underline{\qquad}$$
 In this summation notation, i is called the $\underline{\qquad}$ of summation, n is the $\underline{\qquad}$ of summation, and 1 is the $\underline{\qquad}$ of summation.

EXERCISE SET 8.1

Practice Exercises

In Exercises 1–12, write the first four terms of each sequence whose general term is given.

1.
$$a_n = 3n + 2$$

2.
$$a_n = 4n - 1$$

3.
$$a_n = 3^n$$

4.
$$a_n = \left(\frac{1}{3}\right)^n$$

5.
$$a_n = (-3)^n$$

6.
$$a_n = \left(-\frac{1}{3}\right)^n$$

7.
$$a_n = (-1)^n (n+3)$$

8.
$$a_n = (-1)^{n+1}(n+4)$$

9.
$$a_n = \frac{2n}{n+4}$$

10.
$$a_n = \frac{3n}{n+5}$$

11.
$$a_n = \frac{(-1)^{n+1}}{2^n - 1}$$

12.
$$a_n = \frac{(-1)^{n+1}}{2^n + 1}$$

The sequences in Exercises 13–18 are defined using recursion formulas. Write the first four terms of each sequence.

13.
$$a_1 = 7$$
 and $a_n = a_{n-1} + 5$ for $n \ge 2$

14.
$$a_1 = 12$$
 and $a_n = a_{n-1} + 4$ for $n \ge 2$

15.
$$a_1 = 3$$
 and $a_n = 4a_{n-1}$ for $n \ge 2$

16.
$$a_1 = 2$$
 and $a_n = 5a_{n-1}$ for $n \ge 2$

17.
$$a_1 = 4$$
 and $a_n = 2a_{n-1} + 3$ for $n \ge 2$

18.
$$a_1 = 5$$
 and $a_n = 3a_{n-1} - 1$ for $n \ge 2$

In Exercises 19–22, the general term of a sequence is given and involves a factorial. Write the first four terms of each sequence.

19.
$$a_n = \frac{n^2}{n!}$$

20.
$$a_n = \frac{(n+1)!}{n^2}$$

21.
$$a_n = 2(n+1)!$$

22.
$$a_n = -2(n-1)!$$

In Exercises 23–28, evaluate each factorial expression.

23.
$$\frac{17!}{15!}$$

24.
$$\frac{18!}{16!}$$

25.
$$\frac{16!}{2!14!}$$

26.
$$\frac{20!}{2!18!}$$

27.
$$\frac{(n+2)!}{n!}$$

28.
$$\frac{(2n+1)}{(2n)!}$$

In Exercises 29-42, find each indicated sum.

29.
$$\sum_{i=1}^{6} 5i$$

30.
$$\sum_{i=1}^{6} 7i$$

31.
$$\sum_{i=1}^{4} 2i^2$$

32.
$$\sum_{i=1}^{5} i^3$$

33.
$$\sum_{k=1}^{5} k(k+4)$$

34.
$$\sum_{k=1}^{4} (k-3)(k+2)$$

35.
$$\sum_{i=1}^{4} \left(-\frac{1}{2}\right)^i$$

36.
$$\sum_{i=2}^{4} \left(-\frac{1}{3}\right)^i$$

37.
$$\sum_{i=5}^{9} 11$$

38.
$$\sum_{i=3}^{7} 12$$

39.
$$\sum_{i=0}^{4} \frac{(-1)^i}{i!}$$

40.
$$\sum_{i=0}^{4} \frac{(-1)^{i+1}}{(i+1)!}$$

41.
$$\sum_{i=1}^{5} \frac{i!}{(i-1)!}$$

42.
$$\sum_{i=1}^{5} \frac{(i+2)!}{i!}$$

In Exercises 43–54, express each sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.

43.
$$1^2 + 2^2 + 3^2 + \cdots + 15^2$$

44.
$$1^4 + 2^4 + 3^4 + \cdots + 12^4$$

45.
$$2 + 2^2 + 2^3 + \cdots + 2^{11}$$

46.
$$5 + 5^2 + 5^3 + \cdots + 5^{12}$$

49.
$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots + \frac{14}{14+1}$$