FXERCISE SET 4.2

Practice Exercises

In Exercises 1–8, write each equation in its equivalent exponential form.

1.
$$4 = \log_2 16$$

2.
$$6 = \log_2 64$$

3.
$$2 = \log_3 x$$

4.
$$2 = \log_9 x$$

$$5. 5 = \log_b 32$$

6.
$$3 = \log_b 27$$

$$7. \log_6 216 = y$$

8.
$$\log_5 125 = y$$

In Exercises 9–20, write each equation in its equivalent logarithmic form.

9.
$$2^3 = 8$$

10.
$$5^4 = 625$$

11.
$$2^{-4} = \frac{1}{16}$$

14. $\sqrt[3]{64} = 4$
17. $b^3 = 1000$

12.
$$5^{-3} = \frac{1}{125}$$

13.
$$\sqrt[3]{8} = 2$$

16. $15^2 = x$

14.
$$\sqrt[3]{64} = 4$$

15.
$$13^2 = x$$

16.
$$15^2 = x$$

17.
$$b^3 = 1000$$

18.
$$b^3 = 343$$

19.
$$7^y = 200$$

20.
$$8^y = 300$$

In Exercises 21-42, evaluate each expression without using a calculator.

22. log₇ 49

24. log₃ 27

25.
$$\log_5 \frac{1}{5}$$

26. $\log_6 \frac{1}{6}$

27.
$$\log_2 \frac{1}{9}$$

28. $\log_3 \frac{1}{9}$

29.
$$\log_7 \sqrt{7}$$

30. $\log_6 \sqrt{6}$

31.
$$\log_2 \frac{1}{\sqrt{2}}$$

32. $\log_3 \frac{1}{\sqrt{3}}$

33.
$$\log_{64} 8$$

34. log₈₁ 9

35.
$$\log_{64} 6$$

36. log₁₁ 11

38. log₆ 1

40. log₄ 4⁶

42.
$$7^{\log_7 23}$$

43. Graph $f(x) = 4^x$ and $g(x) = \log_4 x$ in the same rectangular coordinate system.

- **44.** Graph $f(x) = 5^x$ and $g(x) = \log_5 x$ in the same rectangular coordinate system.
- **45.** Graph $f(x) = \left(\frac{1}{2}\right)^x$ and $g(x) = \log_1 x$ in the same rectangular coordinate system.
- **46.** Graph $f(x) = (\frac{1}{4})^x$ and $g(x) = \log_{\frac{1}{2}} x$ in the same rectangular coordinate system.

In Exercises 47–52, the graph of a logarithmic function is given. Select the function for each graph from the following options:

$$f(x) = \log_3 x, g(x) = \log_3(x - 1), h(x) = \log_3 x - 1,$$

 $F(x) = -\log_3 x, G(x) = \log_3(-x), H(x) = 1 - \log_3 x.$

48.

49.

50.

In Exercises 53–58, begin by graphing $f(x) = \log_2 x$. Then use transformations of this graph to graph the given function. What is the vertical asymptote? Use the graphs to determine each function's domain and range.

53.
$$g(x) = \log_2(x+1)$$

54.
$$g(x) = \log_2(x+2)$$

55.
$$h(x) = 1 + \log_2 x$$

56.
$$h(x) = 2 + \log_2 x$$

57.
$$g(x) = \frac{1}{2} \log_2 x$$

58.
$$g(x) = -2\log_2 x$$

The figure shows the graph of $f(x) = \log x$. In Exercises 59–64, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range.

59.
$$g(x) = \log(x - 1)$$

60.
$$g(x) = \log(x - 2)$$

61.
$$h(x) = \log x - 1$$

62.
$$h(x) = \log x - 2$$

63.
$$g(x) = 1 - \log x$$

64.
$$g(x) = 2 - \log x$$

The figure shows the graph of $f(x) = \ln x$. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range.

65.
$$g(x) = \ln(x+2)$$

66.
$$g(x) = \ln(x+1)$$

67.
$$h(x) = \ln(2x)$$

68. $h(x) = \ln(\frac{1}{2}x)$

69.
$$g(x) = 2 \ln x$$

70.
$$g(x) = \frac{1}{2} \ln x$$

71.
$$h(x) = -\ln x$$

72.
$$h(x) = \ln(-x)$$

73.
$$g(x) = 2 - \ln x$$

74.
$$g(x) = 1 - \ln x$$

In Exercises 75–80, find the domain of each logarithmic fun

75.
$$f(x) = \log_5(x+4)$$

76.
$$f(x) = \log_5(x+6)$$

77.
$$f(x) = \log(2 - x)$$

78.
$$f(x) = \log(7 - x)$$

79.
$$f(x) = \ln(x-2)^2$$

80.
$$f(x) = \ln(x-7)^2$$

In Exercises 81–100, evaluate or simplify each expression w_0 using a calculator.

83.
$$\log 10^7$$

84.
$$\log 10^8$$

89.
$$\ln e^6$$

90.
$$\ln e^7$$

91.
$$\ln \frac{1}{e^6}$$

92.
$$\ln \frac{1}{e^7}$$

94.
$$e^{\ln 300}$$

95.
$$\ln e^{9x}$$

96.
$$\ln e^{13x}$$

97.
$$e^{\ln 5x^2}$$

98.
$$e^{\ln 7x^2}$$

99.
$$10^{\log \sqrt{x}}$$

100.
$$10^{\log \sqrt[3]{x}}$$

Practice Plus

In Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x.

101.
$$\log_3(x-1)=2$$

102.
$$\log_5(x+4)=2$$

103.
$$\log_4 x = -3$$

104.
$$\log_{64} x = \frac{2}{3}$$

In Exercises 105–108, evaluate each expression without using a calculator.

105.
$$\log_3(\log_7 7)$$

106.
$$\log_5(\log_2 32)$$

107.
$$\log_2(\log_3 81)$$

In Exercises 109–112, find the domain of each logarithmic function.

109.
$$f(x) = \ln(x^2 - x - 2)$$

110.
$$f(x) = \ln(x^2 - 4x - 12)$$

111.
$$f(x) = \log\left(\frac{x+1}{x-5}\right)$$

112.
$$f(x) = \log\left(\frac{x-2}{x+5}\right)$$