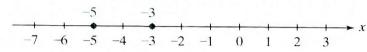
Fill in each blank so that the resulting statement is true.

1. We solve the polynomial inequality $x^2 + 8x + 15 > 0$ by first solving the equation _____. The real solutions of this equation, -5 and -3, shown on the number line, are called _____ points.

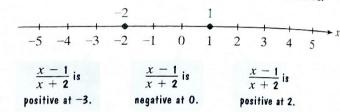


- 2. The points at -5 and -3 shown in Exercise 1 divide the number line into three intervals:
- 3. True or false: A test value for the leftmost interval on the number line shown in Exercise 1 could be −10. ____
- 4. True or false: A test value for the rightmost interval on the number line shown in Exercise 1 could be 0. _____

5. Consider the rational inequality

$$\frac{x-1}{x+2} \ge 0.$$

Setting the numerator and the denominator of $\frac{x}{x}$ equal to zero, we obtain x = 1 and x = -2. These values are shown as points on the number line. Also shown is information about three test values



Based on the information shown above, the solution set of $\frac{x-1}{x+2} \ge 0$ is _____.

EXERCISE SET 3.6

Practice Exercises

Solve each polynomial inequality in Exercises 1-42 and graph the solution set on a real number line. Express each solution set in interval notation.

1.
$$(x-4)(x+2) > 0$$

2.
$$(x+3)(x-5) > 0$$

3.
$$(x-7)(x+3) \le 0$$

4.
$$(x+1)(x-7) \le 0$$

5.
$$x^2 - 5x + 4 > 0$$

7.
$$x^2 + 5x + 4 > 0$$

9.
$$x^2 - 6x + 9 < 0$$

9.
$$x^2 - 6x + 9 < 0$$

11. $3x^2 + 10x - 8 \le 0$

13.
$$2x^2 + x < 15$$

15.
$$4x^2 + 7x <$$

15.
$$4x^2 + 7x < -3$$

10.
$$x^2 - 2x + 1 > 0$$

12.
$$9x^2 + 3x - 2 \ge 0$$

6. $x^2 - 4x + 3 < 0$

8. $x^2 + x - 6 > 0$

$$2x^2 + x < 15$$

14.
$$6x^2 + x > 1$$

15.
$$4x^2 + 7x < -$$

16.
$$3x^2 + 16x < -5$$

 $17. \ 5x \le 2 - 3x^2$ $\frac{1}{19} x^2 - 4x \ge 0$

20. $x^2 + 2x < 0$

 $21. \ 2x^2 + 3x > 0$

22. $3x^2 - 5x \le 0$

 $23. -x^2 + x \ge 0$

24. $-x^2 + 2x \ge 0$

25. $x^2 \le 4x - 2$

 $27. \ 9x^2 - 6x + 1 < 0$

26. $x^2 \le 2x + 2$

28. $4x^2 - 4x + 1 \ge 0$

29. $(x-1)(x-2)(x-3) \ge 0$

30. $(x+1)(x+2)(x+3) \ge 0$

31. $x(3-x)(x-5) \le 0$

32. $x(4-x)(x-6) \le 0$

33. $(2-x)^2\left(x-\frac{7}{2}\right)<0$

34. $(5-x)^2\left(x-\frac{13}{2}\right)<0$

35. $x^3 + 2x^2 - x - 2 \ge 0$

36. $x^3 + 2x^2 - 4x - 8 \ge 0$

37. $x^3 - 3x^2 - 9x + 27 < 0$ 38. $x^3 + 7x^2 - x - 7 < 0$

 $39. x^3 + x^2 + 4x + 4 > 0$

40. $x^3 - x^2 + 9x - 9 > 0$

41. $x^3 \ge 9x^2$

42. $x^3 \le 4x^2$

Solve each rational inequality in Exercises 43-60 and graph the solution set on a real number line. Express each solution set in interval notation.

43.
$$\frac{x-4}{x+3} > 0$$

44.
$$\frac{x+5}{x-2} > 0$$

45.
$$\frac{x+3}{x+4} < 0$$

46.
$$\frac{x+5}{x+2} < 0$$

47.
$$\frac{-x+2}{x-4} \ge 0$$

48.
$$\frac{-x-3}{x+2} \le 0$$

49.
$$\frac{4-2x}{3x+4} \le 0$$

$$50. \ \frac{3x+5}{6-2x} \ge 0$$

51.
$$\frac{x}{x-3} > 0$$

52.
$$\frac{x+4}{x} > 0$$

$$53. \ \frac{(x+4)(x-1)}{x+2} \le 0$$

$$54. \ \frac{(x+3)(x-2)}{x+1} \le 0$$

$$55. \ \frac{x+1}{x+3} < 2$$

56.
$$\frac{x}{x-1} > 2$$

$$57. \ \frac{x+4}{2x-1} \le 3$$

58.
$$\frac{1}{x-3} < 1$$

59.
$$\frac{x-2}{x+2} \le 2$$

60.
$$\frac{x}{x+2} \ge 2$$

Practice Plus

In Exercises 61-64, find the domain of each function.

61.
$$f(x) = \sqrt{2x^2 - 5x + 2}$$

61.
$$f(x) = \sqrt{2x^2 - 5x + 2}$$
 62. $f(x) = \frac{1}{\sqrt{4x^2 - 9x + 2}}$

63.
$$f(x) = \sqrt{\frac{2x}{x+1} - 1}$$

63.
$$f(x) = \sqrt{\frac{2x}{x+1} - 1}$$
 64. $f(x) = \sqrt{\frac{x}{2x-1} - 1}$

Solve each inequality in Exercises 65-70 and graph the solution set on a real number line.

65.
$$|x^2 + 2x - 36| > 12$$
 66. $|x^2 + 6x + 1| > 8$

66.
$$|x^2 + 6x + 1| > 8$$

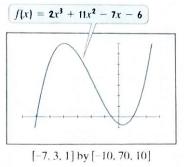
$$67. \ \frac{3}{x+3} > \frac{3}{x-2}$$

67.
$$\frac{3}{x+3} > \frac{3}{x-2}$$
 68. $\frac{1}{x+1} > \frac{2}{x-1}$

69.
$$\frac{x^2 - x - 2}{x^2 - 4x + 3} > 0$$

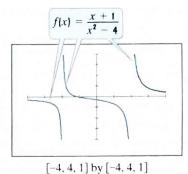
$$70. \ \frac{x^2 - 3x + 2}{x^2 - 2x - 3} > 0$$

In Exercises 71–72, use the graph of the polynomial function to solve each inequality.



71. $2x^3 + 11x^2 \ge 7x + 6$ **72.** $2x^3 + 11x^2 < 7x + 6$

In Exercises 73–74, use the graph of the rational function to solve each inequality.



73.
$$\frac{1}{4(x+2)} \le -\frac{3}{4(x-2)}$$
 74. $\frac{1}{4(x+2)} > -\frac{3}{4(x-2)}$

Application Exercises

Use the position function

$$s(t) = -16t^2 + v_0t + s_0$$

 $(v_0 = \text{initial velocity}, s_0 = \text{initial position}, t = \text{time})$

to answer Exercises 75-76.

- 75. Divers in Acapulco, Mexico, dive headfirst at 8 feet per second from the top of a cliff 87 feet above the Pacific Ocean. During which time period will a diver's height exceed that of the cliff?
- 76. You throw a ball straight up from a rooftop 160 feet high with an initial velocity of 48 feet per second. During which time period will the ball's height exceed that of the rooftop?

The functions

$$f(x) = 0.0875x^2 - 0.4x + 66.6$$

Dry pavement

and

Wet pavement

$$g(x) = 0.0875x^2 + 1.9x + 11.6$$

model a car's stopping distance, f(x) or g(x), in feet, traveling at x miles per hour. Function f models stopping distance on dry pavement and function g models stopping distance on wet pavement. The graphs of these functions are shown for