Applications

I once bought an old car back after I sold it because I missed it so much and I had forgotten that it never ran . . . I just wanted it back. I could only remember what was good about it. Connie Chung, Television News Commentator

- 1. How might the quote apply to what you have learned?
- 2. Seamus bought a car that originally sold for \$40,000. It exponentially depreciates at a rate of 7.75% per year. Write the exponential depreciation equation for this car.
- 3. Shannon's new car sold for \$28,000. Her online research indicates that the car will depreciate exponentially at a rate of $5\frac{1}{4}\%$ per year. Write the exponential depreciation formula for Shannon's car.

5-25

- **4.** Chris **purchased** a used car for \$19,700. The car depreciates exponentially **by** 10% **per** year. How much **will** the car be worth after 6 years? Round your answer to the nearest penny.
- **5.** Laura's new car cost her \$21,000. She was told that this make and model depreciates exponentially at a rate of $8\frac{5}{8}\%$ per year. How much will her car be worth after 100 months?

8.825

- 6. Lisa purchased a used car for *D* dollars. The car depreciates exponentially at a rate of *E*% per year. Write an expression for the value of the car in 5 years, in *A* years, and in *M* months.
- 7. A graphing calculator has determined this exponential regression equation based upon car value data: $y = a^*b^x$, a = 20,952.11, and b = 0.785. What is the rate of depreciation for this car? How much is this car worth after 6 years; 78 months; w years?
- 8. A graphing calculator has determined this exponential regression equation based upon car value data: $y = a^*b^x$, a = 18,547.23, and b = 0.8625. What is the rate of depreciation for this car? How much is this car worth after 6 years, 78 months, and w months?

Age	Value (\$)	Age	Value (\$)
0	19,000	6	8,600
1	16,325	7	7,200
2	13,700	8	6,900
3	12,000	9	6,000
4	10,500	10	5,600
5	9,700		

- 9. The historical prices of a car are recorded for 11 years as shown.
 - a. Construct a scatterplot for the data.
 - **b.** Determine the exponential depreciation equation that models this data. Round to the nearest hundredth.
 - **c.** Determine the depreciation rate.
 - **d.** Predict the value of this car after $3\frac{1}{2}$ years.
- 10. The historical prices of a car are recorded for 17 years as shown.
 - a. Construct a scatterplot for the data.
 - **b.** Determine the exponential depreciation formula that models this data. Round to the nearest hundredth.

5-6

- **c.** Determine the depreciation rate.
- **d.** Predict the value of this car after 140 months.

Age	Value	Age	Value	
0	42,000	9	14,800	
1	37,420	10	13,000	
2	34,000	11	11,245	
3	29,400	12	10,211	
4	26,200	13	9,400	
5	23,700	14	8,100	
6	20,990	15	7,500	
7	18,200	16	6,290	
8	16,876			