Chapter Review

6.1 Properties of Exponents (pp. 291–298)

6.2	Radicals and Ration	al Exponents (pp. 299–304)	
Eva	aluate 512 ^{1/3} . $512^{1/3} = \sqrt[3]{512}$ $= \sqrt[3]{8 \cdot 8 \cdot 8}$ = 8	Rewrite the express Rewrite the express Evaluate the cube ro	ion showing factors.	
Eva	aluate the expression.			
5.	$\sqrt[3]{8}$ 6.	$\sqrt[5]{-243}$	7. 625 ^{3/4}	8. $(-25)^{1/2}$

6.3 Exponential Functions (pp. 305–312)

Graph $f(x) = 9(3)^{x}$.

Step 1 Make a table of values.

x	-2	-1	0	1	2
f(x)	1	3	9	27	81

Step 2 Plot the ordered pairs.

Step 3 Draw a smooth curve through the points.

Graph the function. Describe the domain and range.

9.
$$f(x) = -4\left(\frac{1}{4}\right)^x$$
 10. $f(x) = 3^{x+2}$

12. Write and graph an exponential function *f* represented by the table. Then compare the graph to the graph of $g(x) = \left(\frac{1}{2}\right)^x$.

$$11. \ f(x) = 2^{x-4} - 3$$

x	0	1	2	3
у	2	1	0.5	0.25

6.4 Exponential Growth and Decay (pp. 313–322)

Rewrite the function $y = 10(0.65)^{t/8}$ to determine whether it represents *exponential growth* or *exponential decay*. Identify the percent rate of change.

$y = 10(0.65)^{t/8}$	Write the function.
$= 10(0.65^{1/8})^t$	Power of a Power Property
$\approx 10(0.95)^{t}$	Evaluate the power.

The function is of the form $y = a(1 - r)^t$, where 1 - r < 1, so it represents exponential decay. Use the decay factor 1 - r to find the rate of decay.

1 - r = 0.95	Write an equation.
r = 0.05	Solve for <i>r</i> .

So, the function represents exponential decay, and the rate of decay is 5%.

Determine whether the table represents an *exponential growth function*, an *exponential decay function*, or *neither*. Explain.

13.	x	0	1	2	3	
	у	3	6	12	24	

14.	x	1	2	3	4
	У	162	108	72	48

Rewrite the function to determine whether it represents *exponential growth* or *exponential decay*. Identify the percent rate of change.

15.	$f(t) = 4(1.25)^{t+3}$	16. $y = (1.06)^{8t}$	17. $f(t) = 6(0.84)^{t-4}$
-----	------------------------	------------------------------	-----------------------------------

- 18. You deposit \$750 in a savings account that earns 5% annual interest compounded quarterly.(a) Write a function that represents the balance after *t* years. (b) What is the balance of the account after 4 years?
- **19.** The value of a TV is \$1500. Its value decreases by 14% each year. (a) Write a function that represents the value *y* (in dollars) of the TV after *t* years. (b) Find the approximate monthly percent decrease in value. (c) Graph the function from part (a). Use the graph to estimate the value of the TV after 3 years.

6.5

Solving Exponential Equations (pp. 325–330)

Solve $\frac{1}{9} = 3^{x+6}$.		
$\frac{1}{9} = 3^{x+6}$	Write the equation.	
$3^{-2} = 3^{x+6}$	Rewrite $\frac{1}{9}$ as 3^{-2} .	
-2 = x + 6	Equate the exponents.	
x = -8	Solve for <i>x</i> .	
Solve the equation.		
20. $5^x = 5^{3x-2}$	21. $3^{x-2} = 1$	22. $-4 = 6^{4x-3}$
23. $\left(\frac{1}{3}\right)^{2x+3} = 5$	24. $\left(\frac{1}{16}\right)^{3x} = 64^{2(x+8)}$	25. $27^{2x+2} = 81^{x+4}$

Chapter Test

Evaluate the expression.

1. $-\sqrt[4]{16}$

2. 729^{1/6}

3. (-32)^{7/5}

Simplify the expression. Write your answer using only positive exponents.

4.
$$z^{-2} \cdot z^4$$
 5. $\frac{b^{-5}}{a^0 b^{-8}}$ **6.** $\left(\frac{2c^4}{5}\right)^{-3}$

Write and graph a function that represents the situation.

- 7. Your starting annual salary of \$42,500 increases by 3% each year.
- 8. You deposit \$500 in an account that earns 6.5% annual interest compounded yearly.

Write an explicit rule and a recursive rule for the sequence.

9.	n	1	2	3	4	10. <u>n</u>	1	2	3	4
	a _n	-6	8	22	36	a _n	400	100	25	6.25

Solve the equation. Check your solution.

- **11.** $2^x = \frac{1}{128}$ **12.** $256^{x+2} = 16^{3x-1}$
- **13.** Graph $f(x) = 2(6)^x$. Compare the graph to the graph of $g(x) = 6^x$. Describe the domain and range of *f*.

Use the equation to complete the statement "a = b" with the symbol \langle , \rangle , or =. Do not attempt to solve the equation.

14.
$$\frac{5^a}{5^b} = 5^{-3}$$
 15. $9^a \cdot 9^{-b} = 1$

- **16.** The first two terms of a sequence are $a_1 = 3$ and $a_2 = -12$. Let a_3 be the third term when the sequence is arithmetic and let b_3 be the third term when the sequence is geometric. Find $a_3 b_3$.
- 17. At sea level, Earth's atmosphere exerts a pressure of 1 atmosphere. Atmospheric pressure P (in atmospheres) decreases with altitude. It can be modeled by $P = (0.99988)^a$, where a is the altitude (in meters).
 - **a.** Identify the initial amount, decay factor, and decay rate.
 - **b.** Use a graphing calculator to graph the function. Use the graph to estimate the atmospheric pressure at an altitude of 5000 feet.
- **18.** You follow the training schedule from your coach.
 - **a.** Write an explicit rule and a recursive rule for the geometric sequence.
 - **b.** On what day do you run approximately 3 kilometers?

