Part III: Investing and Budgeting
27. GloboGym Corporation has a stock price of $\$ 3$ on $1 / 1 / 2000$. On $1 / 1 / 2012$, the price was $\$ 9$. Find an equation of the line in slope-intercept form that represents a linear progression of the
(Ames, prus) stock price. $(0,3)(12,9)$

$$
m=\frac{9-3}{12-v}=\frac{6}{12}=\frac{1}{2}
$$

$$
\begin{aligned}
& y=m x+b \\
& 3=\frac{1}{2}(0)+b \\
& 3=b
\end{aligned} \quad y=\frac{1}{2} x+3 \quad \begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& y=m x+b
\end{aligned}
$$

28. You bought a new car 6 years ago. This car loses all marketable value after IO years. If the purchase

$$
\frac{17,000}{10}=17 \omega \text { cost par YR. }
$$

$$
\begin{aligned}
& \text { itraight-line depreciation) } \\
& 6 \times 1700=10,20051 \text { VALuE }
\end{aligned}
$$

$$
17,000-10,200=\$ 6,800 \text { VALUE TODAY }
$$

29. What would be the monthly payment on a car that costs $\$ 18,500$ plus 7.6% sales tax financed
over 5 years at 4% interest? $\quad 18,560 \times .076=1406+14500=19,906$

$$
M n=\frac{19906(.04 / 12)}{\left(1-(1+.04 / 12)^{-60}\right.}=\$ 366.60 / \text { MoNT } 4
$$

30. How much would you be financing (borrowing) on a car purchase of $\$ 16,600$ plus 6.9% tax, followed by a $\$ 3,000$ cash down payment?

$$
\begin{aligned}
16,600 \times .069 & =+1,145.40 \text { TAX } \\
& -3,000.00 \text { DowN PAYne kEnt }
\end{aligned}
$$

31. You go to breakfast with friend's and' pay the bill. The check comes to $\$ 49.50$ plus 6.6% sales tax. You give an 14% tip. How much does the meal cost you?
$49.50 \times .066=\$ 3.27 \operatorname{tax}$

$$
+49.50
$$

552.77 TOTS
32. Factor $2 x^{2}-7 x-9$
+52.77 Bull
$\$ 60.16$ TotaL

\leftarrow Guess nos cutch
Grouping
33. Factor and Solve: $y=4 x^{2}+19 x-5$

$$
0=4 x^{2}+19 x-5
$$

$$
\left\{\begin{array}{l}
0=4 x^{2}+20 x-\sqrt{x-5} \\
0=4 x(x+5)-1(x+5) \quad a \cdot c \\
0=(x+5)(4 x-1) \\
x+5=0 \quad 4 x-1=y \\
x=y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
0=4 x(x+5)-1(x+5) \quad G \cdot C=4 \cdot-5=\frac{-20}{\frac{-1 / 20}{2 / 10}} \\
0=(x+5)(4 x-1)
\end{array}\right.
$$

34. You bought a car 5 years ago. This car loses historically has depreciated at a rate of 10.5% per year (assuming exponential depreciation). If the purchase price was $\$ 15,000$, how much is it worth today?

$$
\begin{aligned}
& A=P(1-r)^{t} \\
& A=15000(1-.105)^{5} \\
& A=\$ 8,614.03
\end{aligned}
$$

35. You are purchasing a 3 year-old used car. If the current price is $\$ 16,500$ and has historically depreciated at a rate of 8% per year, how much did the car cost when it was new? (assume

$$
\begin{aligned}
A & =P(1-r)^{t} \\
16,500 & =\frac{P(1-.10)^{3}}{(1-.06)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{(1500}{1(0.0)^{2}} \\
& p=5=21,199.49
\end{aligned}
$$

36. You have a 5 year old car that is worth $\$ 12,400$. It originally sold for $\$ 16,600$ when it was new.
 What is the average rate of depreciation for this vehicle? (assume exponential depreciation).

37. You bought a new car for $\$ 17,500$. The historical depreciation rate for this particular car has been 11% per year (assume exponential depreciation). In how many years will this car be worth $\$ 10,000$?

38. Conduct a breakeven analysis on the following functions to determine a pricing structure.

$$
\begin{aligned}
& \text { PREAKEJGN is WhEat COST }=\text { REDtNUU } \\
& 10.20
\end{aligned}
$$

Cost Function: $C(x)=4 x+600$
Revenue Function: $R(x)=-x^{2}+81 x-80$

You bought a new car for $\$ 18,500$. There is 6.9% sales tax and you can get a 4.1% interest rate to finance this car over a 4 year period. You have decided to include a $\$ 2000$ down payment (after taxes). The car historically depreciates at a rate of 10% per year.
39. How much tax will you be paying his car?

$$
18,500 \times .069=\$ 1,276.50
$$

40. What is your monthly payment?

$$
\begin{aligned}
& P==1450 . \text { Whats sour monty payment? }+1276.50-2000=17,776.50 \\
& m p=\frac{17776.50(.041 / 12)}{\left(1-(1+.041 / 12)^{-48}\right)}=\$ 402.17
\end{aligned}
$$

