Part II: Compound Interest
19. After 6 months of investing, your portfolio has a value of $\$ 10,600$. You started with $\$ 9,000$. What is the percentage increase in your portfolio? RUK-: ESS

$$
\frac{10600-9000}{9000}=\frac{1600}{9000}=.1777=17.0 \%
$$

20. You bought 600 shares of Microsoft Corporation 5 weeks ago at $\$ 25.15$ per share. Today the share price is $\$ 20.65$. How much money have you lost?
BougHt $600 \times 25.15=15,090$

$$
50 L D \quad 600 \times 20.65=12,390
$$

$$
15,090-12390=\$ 2,700 \quad \text { luST }
$$

21. An amount of $\$ 1,750.00$ is deposited in a bank paying an annual interest rate of 5.7% compounded quarterly. Find the balance after 4 years.

$$
A=1750(1+.057 / 4)^{(4.45}
$$

$$
A=P(1+r / n)^{n t}
$$

22. An amount of $\$ 5,000.00$ is deposited in a bank paying an annual interest rate of 6% compounded daily. Find the balance after 3 years.

$$
\begin{aligned}
& A=5000(1+.06 / 315)^{(365 \cdot 3)} \\
& A=5,985.99 \longrightarrow \$ 5,906.00
\end{aligned}
$$

23. An amount of $\$ 4,500.00$ is deposited in a bank paying an annual interest rate of 3.7%, compounded continuously. Find the balance after 4 years.

$$
\frac{A=4500 \cdot e^{.037 \times 4}}{A=\$ 5,217.01}
$$

$$
{ }^{*} A=P \cdot e^{r t}
$$

24. Give an example of converting an exponential form equation to logarithm form.

$$
a^{x}=b \rightarrow \log _{a} b=X
$$

$$
\begin{aligned}
& \text { Rule } \\
& \text { ExPbuta;- } a^{x}=b \\
& \operatorname{loc} \rightarrow \log _{a} b=x
\end{aligned}
$$

25. How long would it take to double $\$ 600$ at 6.2% annual interest compounded annually? \qquad

$$
\begin{aligned}
& 2=1.062^{t} \rightarrow \underbrace{\log _{1.062} 2}_{\text {at } 5.2 \% \text { interest and financing }}=t=1.54 R 5 \times \log _{4} b=x
\end{aligned}
$$

26. You are purchasing a car for $\$ 18,000$ at 5.2% interest and financing this purchase over a period of -2 g a 5 years. What would be your monthly payment?

$$
M P=\frac{18000(.052 / n)}{\left.(1-1+.052 / n)^{-60}\right)}=\$ 341.33 \quad m P=\frac{P(r / 12)}{\left(1-(1+r / n)^{-m}\right)}
$$

