College Algebra Last Review (New Spicy Textbook, Chapter 3-4)

Write an equation for the following graphs:
\#1.

\#2.

Find the maximum or minimum value of the function.
\#3) $f(x)=2 x^{2}-8 x-3$
\#4) $f(x)=-2 x^{2}-12 x+3$
\#5) A textile manufacturer has a daily production cost of $C(x)=0.045 x 2-110 x+10,000$ where C is the total cost in dollars and x is the number of units produced. How many units should be produced each day to minimize cost? What is the minimum cost?
\#6) Use synthetic division to find the value of $f(-3)$ when $f(x)=x^{3}-6 x^{2}+4 x-2$.
\#7) List the possible rational zeros of the function and state whether each zero crosses or touches and turns around: $f(x)=-4 x^{3}+3 x^{2}-4 x+5$

State the domain of the following functions:
\#8) $f(x)=\frac{x^{3}-2 x^{2}+3 x}{x^{2}-2 x-3}$
\#9) $\frac{x^{2}-2 x+4}{3 x-2}$

Find the vertical asymptotes of the function:
\#10) $f(x)=\frac{x^{3}+x}{x^{2}-6 x}$
\#11) $f(x)=\frac{\frac{x^{2}-6}{x^{2}-5 x+6}}{}$

Find the horizontal asymptotes of the function:
\#12) $f(x)=\frac{x^{4}-2}{x^{2}+16}$
\#13) $f(x)=\frac{3 x}{3 x^{2}-6}$
\#14) $f(x)=\frac{2 x^{2}}{3 x^{2}-6 x}$

Find the slant asymptotes of the function, if it has one:
\#15) $f(x)=\frac{x^{2}+5 x}{x+3}$
\#16) $f(x)=\frac{x^{2}+3 x-1}{x-2}$
\#17) $f(x)=\frac{x^{4}-2}{x^{2}+16}$

Solve for the final amount of money:
\#18: Investment of $\$ 10,000$ for 5 years at interest rate of 5.5% \& money is compounded semiannually.
\#19: Principal of $\$ 5000$ for 10 years at interest rate of 6.5% \& money is compounded daily.
\#20: Invest $\$ 6000$ for 4 years at interest rate of 8.25% \& money is compounded continuously.

Solve:
\#21: $\log _{6}(1 / 6)=$?
\#22. $\log _{81}(9)=$?
\#23. $7^{\wedge}\left(\log _{7} 23\right)=$?
\#24: $\log _{2}\left(\log _{3} 81\right)=$? \#24. $\operatorname{In}\left(\mathrm{e}^{\wedge}(\right.$ I love math $\left.)\right)=$?

Expand:
\#25. Log $1000 x^{3}$
amen
\#26. $\operatorname{Ln} \underline{x^{3} V\left(\left(x^{2}+1\right)\right.}$ $x^{2} y^{3} z^{4}$
\#27. $\log 100 x^{3}(x-5)^{1 / 5}$
$3(x+7)^{2}$

Condense:
\#28. $\log x+\log \left(x^{2}-4\right)-\log 15-\log (x+2) \quad$ \#29. 8log $x-(1 / 3) \log y$
\#30. (1/2) $(\log x+\log y-\log z-\log w)$

