Chapter Review

9.1 Properties of Radicals (pp.479-488)

a. Simplify $\sqrt[3]{27 x^{10}}$.

$$
\begin{aligned}
\sqrt[3]{27 x^{10}} & =\sqrt[3]{27 \cdot x^{9} \cdot x} & & \text { Factor using the greatest perfect cube factors. } \\
& =\sqrt[3]{27} \cdot \sqrt[3]{x^{9}} \cdot \sqrt[3]{x} & & \text { Product Property of Cube Roots } \\
& =3 x^{3} \sqrt[3]{x} & & \text { Simplify. }
\end{aligned}
$$

b. Simplify $\frac{12}{3+\sqrt{5}}$.

$$
\begin{aligned}
\frac{12}{3+\sqrt{5}} & =\frac{12}{3+\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3-\sqrt{5}} & & \text { The conjugate of } 3+\sqrt{5} \text { is } 3-\sqrt{5} . \\
& =\frac{12(3-\sqrt{5})}{3^{2}-(\sqrt{5})^{2}} & & \text { Sum and difference pattern } \\
& =\frac{36-12 \sqrt{5}}{4} & & \text { Simplify. } \\
& =9-3 \sqrt{5} & & \text { Simplify. }
\end{aligned}
$$

Simplify the expression.

1. $\sqrt{72 p^{7}}$
2. $\sqrt{\frac{45}{7 y}}$
3. $\sqrt[3]{\frac{125 x^{11}}{4}}$
4. $\frac{8}{\sqrt{6}+2}$
5. $4 \sqrt{3}+5 \sqrt{12}$
6. $15 \sqrt[3]{2}-2 \sqrt[3]{54}$
7. $(3 \sqrt{7}+5)^{2}$
8. $\sqrt{6}(\sqrt{18}+\sqrt{8})$

9.2 Solving Quadratic Equations by Graphing (pp. 489-496)

Solve $x^{2}+3 x=4$ by graphing.
Step 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+3 x & =4 & & \text { Write original equation. } \\
x^{2}+3 x-4 & =0 & & \text { Subtract } 4 \text { from each side. }
\end{aligned}
$$

Step 2 Graph the related function $y=x^{2}+3 x-4$.
Step 3 Find the x-intercepts. The x-intercepts are -4 and 1 .

So, the solutions are $x=-4$ and $x=1$.

Solve the equation by graphing.
9. $x^{2}-9 x+18=0$
10. $x^{2}-2 x=-4$
11. $-8 x-16=x^{2}$
12. The graph of $f(x)=(x+1)\left(x^{2}+2 x-3\right)$ is shown. Find the zeros of f.
13. Graph $f(x)=x^{2}+2 x-5$. Approximate the zeros of f to the nearest tenth.

9.3 Solving Quadratic Equations Using Square Roots (pp. 497-502)

A sprinkler sprays water that covers a circular region of 90π square feet. Find the diameter of the circle.

Write an equation using the formula for the area of a circle.

$$
\begin{aligned}
A & =\pi r^{2} & & \text { Write the formula. } \\
90 \pi & =\pi r^{2} & & \text { Substitute } 90 \pi \text { for } A . \\
90 & =r^{2} & & \text { Divide each side by } \pi . \\
\pm \sqrt{90} & =r & & \text { Take the square root of each side. } \\
\pm 3 \sqrt{10} & =r & & \text { Simplify. }
\end{aligned}
$$

A diameter cannot be negative, so use the positive square root.
The diameter is twice the radius. So, the diameter is $6 \sqrt{10}$.
The diameter of the circle is $6 \sqrt{10} \approx 19$ feet.

Solve the equation using square roots. Round your solutions to the nearest hundredth, if necessary.
14. $x^{2}+5=17$
15. $x^{2}-14=-14$
16. $(x+2)^{2}=64$
17. $4 x^{2}+25=-75$
18. $(x-1)^{2}=0$
19. $19=30-5 x^{2}$

9.4 Solving Quadratic Equations by Completing the Square (pp. 505-514)

Solve $x^{2}-6 x+4=11$ by completing the square.

$$
\begin{aligned}
x^{2}-6 x+4 & =11 & & \text { Write the equation. } \\
x^{2}-6 x & =7 & & \text { Subtract } 4 \text { from each side. } \\
x^{2}-6 x+(-3)^{2} & =7+(-3)^{2} & & \text { Complete the square by adding }\left(\frac{-6}{2}\right)^{2}, \text { or }(-3)^{2}, \text { to each side. } \\
(x-3)^{2} & =16 & & \text { Write the left side as the square of a binomial. } \\
x-3 & = \pm 4 & & \text { Take the square root of each side. } \\
x & =3 \pm 4 & & \text { Add } 3 \text { to each side. }
\end{aligned}
$$

The solutions are $x=3+4=7$ and $x=3-4=-1$.

Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.
20. $x^{2}+6 x-40=0$
21. $x^{2}+2 x+5=4$
22. $2 x^{2}-4 x=10$

Determine whether the quadratic function has a maximum or minimum value. Then find the value.
23. $y=-x^{2}+6 x-1$
24. $f(x)=x^{2}+4 x+11$
25. $y=3 x^{2}-24 x+15$
26. The width w of a credit card is 3 centimeters shorter than the length ℓ. The area is 46.75 square centimeters. Find the perimeter.

