College Algebra - Chapter 8

Name

Example 1: Find a formula for the nth term of the arithmetic sequence whose first term is 5 and common difference is 4.

Example 3: Find a formula for the nth term of the arithmetic sequence whose first term is 6 and common difference is -4.

Example 2: Find a formula for the nth term of the arithmetic sequence whose first term is 2 and common difference is 11.

4.

Find a formula for the nth term of the arithmetic sequence whose first term is 7 and common difference is 5.

Example 5:

Find a formula for the nth term of the arithmetic sequence whose third term is 12 and common difference is 3.

Example 6: Find a formula for the nth term of the arithmetic sequence whose second term is 21 and common difference is 9.

7.

Find a formula for the nth term of the arithmetic sequence whose second term is 15 and common difference is 7.

8.

Find a formula for the nth term of the arithmetic sequence whose fourth term is 31 and common difference is 5.

9.

Find a formula for the nth term of the arithmetic sequence whose seventh term is 58 and whose eleventh term is 42.

10.

Find a formula for the nth term of the arithmetic sequence whose fifth term is 13 and whose twentieth term is 58.

$$\sum_{i=1}^{n} a_i = n \left(\frac{a_1 + a_n}{2} \right)$$

11.

Find the tenth term of the geometric sequence whose first term is 24 and whose common ratio is 1.25.

12. Find the 14th term of the geometric sequence whose first three terms are 2, 8, and 32.

13. The fifth term of a geometric sequence is 81. The tenth term is $\frac{19683}{32}$. Find the formula for the nth term.

14.

Find the 11th term of a geometric sequence whose first three term are 3, 15, 75.

15

The third term of a geometric sequence is 16. The tenth term is 1/32. Find the formula for the nth term

16 The eighth term of a geometric sequence is 384. The thirteenth term is 12288. Find the formula.

Notes:

If |r|<1, then the sum of the infinite geometric series $a_1 + a_1r + a_1r^2 + a_1r^3 + \ldots + a_1r^{n-1} + \ldots$ is given by:

$$\sum_{n=1}^{\infty} a_1 r^{n-1} = \frac{a_1}{1-r}$$