Page 416, #6.1, 6.3, 6.5, 6.6

Solutions

a.
$$P(X = 5) = 1 - (.1 + .2 + .3 + .3) = .10$$

b. Pain score is discrete because they are plotable points with no stated values between.

$$\sigma_{x} = \sqrt{np(1 - p)}$$

d.
$$E_x = \mu_x = np =$$

$$\mu_x = E(x) = \sum x_i p_i$$

Mean = $(1 \times .1) + (2 \times .2) + (3 \times .3) + (4 \times .3) + (5 \times .1)$

Var(x) =
$$\sigma_x^2 = (x_1 - \mu_x)^2 p_1 + (x_2 - \mu_x)^2 p_2 +$$

Variance = $(1-3.1)^2 (0.1) + (2-3.1)^2 (0.2) +$

Variance = $(1-3.1)^2(0.1) + (2-3.1)^2(0.2) + (3-3.1)^2(0.3) + (4-3.1)^2(0.3) + (5-3.1)^2(0.1)$

$$= 1.29$$

Standard deviation $\sigma_x = \sqrt{1.29} \approx \boxed{1.14}$

2. Matches: 0 2 3 4 1

Payout: \$0 \$0 \$1 \$3 \$120

P_i: .308 .433 .213 .043 .003

a.
$$\mu_x = $0.70$$

$$\sigma_{x} = = $6.58$$

The expected outcome is to win \$0.70. The amount that varies from is typically \$6.58 less or more.

b. Jerry places \$5 bet on 4-spot keno

$$\mu_{x}$$
 = \$0.70 x 5 = \$3.50

$$\sigma_{x}$$
 = = \$6.58 x 5 = \$32.90

$$\mu_x = np$$

$$\mu_{x} = np$$

$$\sigma_{x} = \sqrt{np(1 - p)}$$

c.
$$\mu_x = 5 \times .70 = $3.50$$

 $\sigma_x = \sqrt{(5)(.70)(1 - .70)}$

$$\sigma_{\times} = \sqrt{(5)(.70)(1 - .70)}$$

$$\sigma_{\times}$$
 = \$1.03 *

*not sure I got this correct...

Thoughts?

d. The casino would prefer both as their expected payout is the same. .