Chapter Review

5.1 Solving Systems of Linear Equations by Graphing (pp. 235-240)

Solve the system by graphing.

$$
\begin{aligned}
& y=x-2 \\
& y=-3 x+2
\end{aligned}
$$

Step 1 Graph each equation.
Step 2 Estimate the point of intersection.
The graphs appear to intersect at $(1,-1)$.
Step 3 Check your point from Step 2.

Equation 1

$$
\begin{array}{ll}
\text { Equation } 1 & \text { Equation 2 } \\
y=x-2 & y=-3 x+2 \\
-1 \stackrel{?}{=} 1-2 & -1 \stackrel{?}{=}-3(1)+2 \\
-1=-1 & -1=-1
\end{array}
$$

Equation 1
Equation 2

The solution is $(1,-1)$.

Solve the system of linear equations by graphing.

1. $y=-3 x+1$
$y=x-7$
2. $y=-4 x+3$
$4 x-2 y=6$
3. $5 x+5 y=15$
$2 x-2 y=10$

5.2 Solving Systems of Linear Equations by Substitution (pp. 241-246)

Solve the system by substitution. $\quad \mathbf{- 2 x + y}=\mathbf{- 8} \quad$ Equation 1

$$
\begin{equation*}
7 x+y=10 \tag{Equation 2}
\end{equation*}
$$

Step 1 Solve for y in Equation 1.

$$
y=2 x-8 \quad \text { Revised Equation } 1
$$

Step 2 Substitute $2 x-8$ for y in Equation 2 and solve for x.

$$
\begin{aligned}
7 x+y & =10 & & \text { Equation } 2 \\
7 x+(2 x-8) & =10 & & \text { Substitute } 2 x-8 \text { for } y . \\
9 x-8 & =10 & & \text { Combine like terms. } \\
9 x & =18 & & \text { Add } 8 \text { to each side. } \\
x & =2 & & \text { Divide each side by } 9 .
\end{aligned}
$$

Step 3 Substituting 2 for x in Equation 1 and solving for y gives $y=-4$.
The solution is $(2,-4)$.

Solve the system of linear equations by substitution. Check your solution.
4. $3 x+y=-9$
$y=5 x+7$
5. $x+4 y=6$
$x-y=1$
6. $2 x+3 y=4$
$y+3 x=6$
7. You spend $\$ 20$ total on tubes of paint and disposable brushes for an art project. Tubes of paint cost $\$ 4.00$ each and paintbrushes cost $\$ 0.50$ each. You purchase twice as many brushes as tubes of paint. How many brushes and tubes of paint do you purchase?

5.3 Solving Systems of Linear Equations by Elimination (pp. 247-252)

Solve the system by elimination.

$$
\begin{array}{ll}
4 x+6 y=-8 & \text { Equation } 1 \\
x-2 y=-2 & \text { Equation } 2
\end{array}
$$

Step 1 Multiply Equation 2 by 3 so that the coefficients of the y-terms are opposites.

$$
\begin{array}{lll}
4 x+6 y=-8 \\
x-2 y=-2 & \text { Multiply by 3. }
\end{array} \quad \begin{array}{ll}
4 x+6 y=-8 \\
3 x-6 y=-6
\end{array} \quad \begin{aligned}
& \text { Equation } 1 \\
& \text { Revised Equation 2 }
\end{aligned}
$$

Step 2 Add the equations.

$$
\begin{array}{rlrl}
4 x+6 y & =-8 & & \text { Equation } 1 \\
3 x-6 y & =-6 & & \text { Revised Equation 2 } \\
\hline 7 x & & =-14 & \\
\text { Add the equations. }
\end{array}
$$

Step 3 Solve for x.

$$
\begin{aligned}
7 x & =-14 & & \text { Resulting equation from Step } 2 \\
x & =-2 & & \text { Divide each side by } 7 .
\end{aligned}
$$

Step 4 Substitute -2 for x in one of the original equations and solve for y.

$$
\begin{aligned}
4 x+6 y & =-8 & & \text { Equation } 1 \\
4(-2)+6 y & =-8 & & \text { Substitute }-2 \text { for } x . \\
-8+6 y & =-8 & & \text { Multiply. } \\
y & =0 & & \text { Solve for } y .
\end{aligned}
$$

Check

Equation 1

$$
\begin{array}{r}
4 x+6 y=-8 \\
4(-2)+6(0) \stackrel{?}{=}-8 \\
-8=-8
\end{array}
$$

Equation 2

$$
x-2 y=-2
$$

$$
(-2)-2(0) \stackrel{?}{=}-2
$$

$$
-2=-2
$$

The solution is $(-2,0)$.
Solve the system of linear equations by elimination. Check your solution.
8. $9 x-2 y=34$
$5 x+2 y=-6$
9. $x+6 y=28$
$2 x-3 y=-19$
10. $8 x-7 y=-3$
$6 x-5 y=-1$

5.4 Solving Special Systems of Linear Equations (pp. 253-258)

Solve the system.

$$
\begin{array}{ll}
4 x+2 y=-14 & \text { Equation } 1 \\
y=-2 x-6 & \text { Equation } 2
\end{array}
$$

Solve by substitution. Substitute $-2 x-6$ for y in Equation 1 .

$$
\begin{aligned}
4 x+2 y & =-14 & & \text { Equation } 1 \\
4 x+2(-2 x-6) & =-14 & & \text { Substitute }-2 x-6 \text { for } y . \\
4 x-4 x-12 & =-14 & & \text { Distributive Property } \\
-12 & =-14 \times & & \text { Combine like terms. }
\end{aligned}
$$

The equation $-12=-14$ is never true. So, the system has no solution.
Solve the system of linear equations.
11. $x=y+2$
$-3 x+3 y=6$
12. $3 x-6 y=-9$
$-5 x+10 y=10$
13. $-4 x+4 y=32$
$3 x+24=3 y$

5.5 Solving Equations by Graphing
 (pp. 261-266)

Solve $3 x-1=-2 x+4$ by graphing. Check your solution.
Step 1 Write a system of linear equations using each side of the original equation.

$$
y=3 x-1 \rightarrow 3 x-1=-2 x+4<y=-2 x+4
$$

Step 2 Graph the system.

$$
\begin{array}{ll}
y=3 x-1 & \text { Equation 1 } \\
y=-2 x+4 & \text { Equation 2 }
\end{array}
$$

The graphs intersect at $(1,2)$.
So, the solution of the equation is $x=1$.

Check

$$
\begin{gathered}
3 x-1=-2 x+4 \\
3(1)-1 \stackrel{?}{=}-2(1)+4 \\
2=2
\end{gathered}
$$

Solve the equation by graphing. Check your solution(s).
14. $\frac{1}{3} x+5=-2 x-2$
15. $|x+1|=|-x-9|$
16. $|2 x-8|=|x+5|$

5.6 Graphing Linear Inequalities in Two Variables (pp. 267-272)

Graph $4 x+2 y \geq-6$ in a coordinate plane.
Step 1 Graph $4 x+2 y=-6$, or $y=-2 x-3$. Use a solid line because the inequality symbol is \geq.

Step 2 Test $(0,0)$.

$$
\begin{aligned}
4 x+2 y & \geq-6 & & \text { Write the inequality. } \\
4(0)+2(0) & \stackrel{?}{\geq}-6 & & \text { Substitute. } \\
0 & \geq-6 & & \text { Simplify. }
\end{aligned}
$$

Step 3 Because $(0,0)$ is a solution, shade the half-plane that contains $(0,0)$.
Graph the inequality in a coordinate plane.
17. $y>-4$
18. $-9 x+3 y \geq 3$
19. $5 x+10 y<40$

5.7 Systems of Linear Inequalities (pp. 273-280)

Graph the system.

$$
\begin{array}{ll}
y<x-2 & \text { Inequality 1 } \\
y \geq 2 x-4 & \text { Inequality } 2
\end{array}
$$

Step 1 Graph each inequality.
Step 2 Find the intersection of the half-planes. One solution is $(0,-3)$.

> The solution is the purple-shaded region.

Graph the system of linear inequalities.
20. $y \leq x-3$
$y \geq x+1$
21. $y>-2 x+3$
$y \geq \frac{1}{4} x-1$
22. $x+3 y>6$
$2 x+y<7$

5 Chapter Test

Solve the system of linear equations using any method. Explain why you chose the method.

1. $8 x+3 y=-9$
$-8 x+y=29$
2. $\frac{1}{2} x+y=-6$
$y=\frac{3}{5} x+5$
3. $y=4 x+4$
$-8 x+2 y=8$
4. $x=y-11$
$x-3 y=1$
5. $6 x-4 y=9$
$9 x-6 y=15$
6. $y=5 x-7$
$-4 x+y=-1$
7. Write a system of linear inequalities so the points $(1,2)$ and $(4,-3)$ are solutions of the system, but the point $(-2,8)$ is not a solution of the system.
8. How is solving the equation $|2 x+1|=|x-7|$ by graphing similar to solving the equation $4 x+3=-2 x+9$ by graphing? How is it different?

Graph the system of linear inequalities.

9. $y>\frac{1}{2} x+4$
$2 y \leq x+4$
10. $x+y<1$
$5 x+y>4$
11. $y \geq-\frac{2}{3} x+1$
$-3 x+y>-2$
12. You pay $\$ 45.50$ for 10 gallons of gasoline and 2 quarts of oil at a gas station. Your friend pays $\$ 22.75$ for 5 gallons of the same gasoline and 1 quart of the same oil.
a. Is there enough information to determine the cost of 1 gallon of gasoline and 1 quart of oil? Explain.
b. The receipt shown is for buying the same gasoline and same oil. Is there now enough information to determine the cost of 1 gallon of gasoline and 1 quart of oil? Explain.
c. Determine the cost of 1 gallon of gasoline and 1 quart of oil.
13. Describe the advantages and disadvantages of solving a system of linear equations by graphing.
14. You have at most $\$ 60$ to spend on trophies and medals to give as prizes for a contest.
a. Write and graph an inequality that represents the numbers of trophies and medals you can buy. Identify and interpret a solution of the inequality.
b. You want to purchase at least 6 items. Write and graph a system that represents the situation. How many of each item can you buy?
15. Compare the slopes and y-intercepts of the graphs of the equations in the linear system $8 x+4 y=12$ and $3 y=-6 x-15$ to determine whether the system has one solution, no solution, or infinitely many solutions. Explain.

Cumulative Assessment

1. The graph of which equation is shown?
(A) $9 x-2 y=-18$
(B) $-9 x-2 y=18$
(C) $9 x+2 y=18$
(D) $-9 x+2 y=-18$

2. A van rental company rents out $6-, 8-, 12-$, and 16 -passenger vans. The function $C(x)=100+5 x$ represents the cost C (in dollars) of renting an x-passenger van for a day. Choose the numbers that are in the range of the function.

| 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. Fill in the system of linear inequalities with $<, \leq,>$, or \geq so that the graph represents the system.

$$
\begin{array}{ll}
y & 3 x-2 \\
y & -x+5
\end{array}
$$

4. Your friend claims to be able to fill in each box with a constant so that when you set each side of the equation equal to y and graph the resulting equations, the lines will intersect exactly once. Do you support your friend's claim? Explain.

$$
4 x+\square=4 x+\square
$$

5. Select the phrases you should use when describing the transformations from the graph of f to the graph of g.

reflection in the x-axis	reflection in the y-axis
horizontal translation	vertical translation
horizontal stretch	vertical stretch
horizontal shrink	vertical shrink

6. Which two equations form a system of linear equations that has no solution?

$$
y=3 x+2 \quad y=\frac{1}{3} x+2 \quad y=2 x+3 \quad y=3 x+\frac{1}{2}
$$

7. Fill in a value for a so that each statement is true for the equation $a x-8=4-x$.
a. When $a=\square$, the solution is $x=-2$.
b. When $a=\square$, the solution is $x=12$.
c. When $a=\square$, the solution is $x=3$.
8. Which ordered pair is a solution of the linear inequality whose graph is shown?
(A) $(1,1)$
(B) $(-1,1)$
(C) $(-1,-1)$
(D) $(1,-1)$

9. Which of the systems of linear equations are equivalent?

$$
\begin{array}{l|l|l}
4 x-5 y=3 & 4 x-5 y=3 & 4 x-5 y=3 \\
2 x+15 y=-1 & -4 x-30 y=2 & 4 x+30 y=-1
\end{array}
$$

10. The value of x is more than 9 . Which of the inequalities correctly describe the triangle? The perimeter (in feet) is represented by P, and the area (in square feet) is represented by A.

$$
P<29
$$

