Ch 8 Final Exam Review

Name: \qquad

Non-Calculator

1. Determine the order of the following matrices:
a) $\left[\begin{array}{ccc}2 & 1 & -6 \\ 8 & 9 & 7\end{array}\right]$
b) $\left[\begin{array}{llll}4 & -3 & 7 & -1\end{array}\right]$
c) $\left[\begin{array}{c}-3 \\ 5 \\ 7\end{array}\right]$
2. Evaluate: a) $-3\left[\begin{array}{cc}2 & 6 \\ 1 & -1\end{array}\right]-5\left[\begin{array}{cc}6 & 2 \\ 4 & -7\end{array}\right]$
b) $\frac{1}{2}\left[\begin{array}{cc}2 & 6 \\ -8 & 4\end{array}\right]+3\left[\begin{array}{cc}-1 & 3 \\ -2 & -3\end{array}\right]$
3. Multiply: a) $\left[\begin{array}{ccc}1 & 2 & -3 \\ -1 & 2 & 0\end{array}\right]\left[\begin{array}{cc}-2 & -1 \\ 1 & 0 \\ -3 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}6 & 2 & -3 \\ -1 & 7 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 2 \\ 4 & 5\end{array}\right]$
c) $\left[\begin{array}{lll}-1 & 2 & -3\end{array}\right]\left[\begin{array}{c}7 \\ -2 \\ -5\end{array}\right]$
4. Find the inverse: a) $\left[\begin{array}{cc}-6 & 2 \\ 5 & -2\end{array}\right]$
b) $\left[\begin{array}{cc}6 & 2 \\ -3 & -1\end{array}\right]$
c) $\left[\begin{array}{cc}-2 & -1 \\ 5 & 4\end{array}\right]$
5. Use the inverse of the coefficient matrix to solve the system of linear equations:
a) $\left\{\begin{array}{l}6 x+5 y=13 \\ 5 x+4 y=10\end{array}\right.$
b) $\left\{\begin{array}{l}7 x+5 y=23 \\ 3 x+2 y=10\end{array}\right.$
6. Use Cramer's Rule to solve the system of linear equations:
a) $\left\{\begin{array}{l}x+y=7 \\ x-y=3\end{array}\right.$
b) $\left\{\begin{array}{l}12 x+3 y=15 \\ 2 x-3 y=13\end{array}\right.$
7. Evaluate:
a) $\left|\begin{array}{cc}7 & 5 \\ -1 & 3\end{array}\right|$
b) $\left|\begin{array}{ccc}1 & 2 & 2 \\ -1 & -4 & 1 \\ 1 & 0 & 4\end{array}\right|$
c) $\left|\begin{array}{ccc}3 & 2 & 1 \\ -2 & 0 & 2 \\ 4 & -5 & -2\end{array}\right|$
8. Use a determinant to find the area of the triangle with the following vertices:
a) $(1,-1),(4,2)$, and ($1,-3$)
b) $(0,-3),(2,-1)$, and $(-5,2)$
c) $(-1,-2),(2,-3)$, and ($2,-1$)
d) $(-4,-6),(11,12)$, and $(1,0)$
9. Using nine pixels in a 3×3 grid and the color levels shown:

a) Write a 3×3 matrix to represent the letter L in Light Grey on a Black background. This is matrix A.

Calculator Problems

b) Find a matrix, B, that $A+B$ changes the letter L from Light Grey to Black and the background from Black to White
10. Use the inverse of the coefficient matrix to solve the system of linear equations:
a) $\left\{\begin{array}{l}4 x-5 y-6 z=-1 \\ x-2 y-5 z=-12 \\ 2 x-y=7\end{array}\right.$
b) $\left\{\begin{array}{c}w+x+y+z=4 \\ w+3 x-2 y+2 z=7 \\ 2 w+2 x+y+z=3 \\ w-x+2 y+3 z=5\end{array}\right.$
11. Multiply: a) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 5 & 1 & 6 \\ 2 & -1 & 2\end{array}\right]\left[\begin{array}{cccc}2 & 8 & 1 & 2 \\ 7 & 1 & 9 & 1 \\ -1 & -2 & -3 & 7\end{array}\right]$
b) $\left[\begin{array}{cccc}-1 & 0 & 1 & 2 \\ 3 & 1 & 5 & 4 \\ -1 & 1 & -3 & 7\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & -5 \\ -2 & -1 & -3\end{array}\right]$
12. Using A and B to the right, find: $A=\left[\begin{array}{ccc}2 & -4 & -3 \\ -1 & 3 & 0\end{array}\right] \quad B=\left[\begin{array}{ccc}-3 & 2 & 1 \\ 0 & 3 & 5\end{array}\right]$
a) $B-2 A$
b) $2 A-3 B$
c) $3 A-2 B$
d) AB
13. Find the inverse (leave answers as fractions): a) $\left[\begin{array}{ccc}0 & 2 & -1 \\ -2 & -1 & 2 \\ 4 & 0 & 3\end{array}\right] \quad$ b) $\left[\begin{array}{ccc}2 & 2 & -1 \\ 3 & -1 & 0 \\ -2 & -1 & 5\end{array}\right]$
(14. Find the determinant: a) $\left[\begin{array}{ccc}6 & -3 & 2 \\ -5 & -2 & 1 \\ 3 & 1 & 4\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & -3 & 4 \\ 1 & 4 & 2\end{array}\right]$
15. The final grade for a course is determined by 2 different grading systems. The grades for five students are given in matrix A. The grading systems are modeled by matrix B.

a) Compute the matrix $A B$
b) What is the final course grade for student 3 , using grading system 2 ?
c) What is the final course grade for student 4 , using grading system 1 ?
16. Use Cramer's Rule to solve for x, y and z : a) Show set-up for each:

$$
\left\{\begin{array}{l}
3 x+y+4 z=-8 \\
2 x+3 y-2 z=11 \\
x-3 y-2 z=4
\end{array}\right.
$$

b) $\left\{\begin{aligned} x+2 z & =4 \\ 2 y-z & =5 \\ 2 x+3 y & =13\end{aligned}\right.$

