Algebra II Practice Test

Objective: 1.1a

1. Which is equivalent to $49^{\frac{3}{2}}$?

A 21
B 98
C 294
D 343
2. Which expression is another way to write $\sqrt[3]{125 x^{4}}$?

A $5 x^{\frac{3}{4}}$
B $5 x^{\frac{4}{3}}$
C $25 x^{\frac{3}{4}}$
D $25 x^{\frac{4}{3}}$
3. If x and y are real numbers, what is the simplified radical form of $\left(x^{2} y^{5}\right)^{\frac{1}{5}}$?

A $y \sqrt[5]{x^{2}}$
B $y \sqrt{x^{5}}$
C $|y| \sqrt[5]{x^{2}}$
D $|y| \sqrt{x^{5}}$

Objective 1.1b
4. What is the simplified expression of $\sqrt{\frac{36 x^{8}}{4 x^{6}}}$?

A $3 x$
B $9 x$
C $3 x^{2}$
D $9 x^{2}$
5. What is the simplified form of $(2 \sqrt{5}+3)(\sqrt{5}-1)$?

A $\sqrt{5}-3$
B $\sqrt{5}+7$
C $2 \sqrt{5}-3$
D $2 \sqrt{5}+7$
6. What is the sum of $\frac{1}{3 \sqrt{25}}$ and $\frac{1}{2 \sqrt[3]{27}}$?

A $\frac{2}{21}$
B $\frac{7}{30}$
C $\frac{2}{33}$
D $\frac{11}{90}$
7. The area of a square is $2 \sqrt{2}+3$. What is the length of a side of the square?

A $\sqrt{2}-1$
B $\sqrt{2}+1$
C $2 \sqrt{2}-1$
D $2 \sqrt{2}+1$
Objective 1.2a
8. Which expression represents the quotient? $\frac{8 x^{6} z^{4}+4 x^{4} z^{2}}{4 x^{2} z}$

A $2 x^{4} z^{3}+x^{2} z$
B $2 x^{3} z^{4}+x^{2} z^{2}$
C $4 x^{4} z^{3}+3 x^{2} z$
D $4 x^{3} z^{4}+3 x^{2} z^{2}$
9. Which expression represents the quotient? $\frac{4 x^{2} y}{8 x y^{2}} \div \frac{12 x y^{2}}{8 x^{6} y^{3}}$

A $\frac{x^{5}}{3}$
B $\frac{3}{x^{5}}$
C $\frac{x^{6}}{3}$
D $\frac{3}{x^{6}}$
10. Which expression represents the quotient? $\left(y^{2}-4 y-32\right) \div(y+4)$

A $y-8$
B $y+8$
C $y-4$
D $y+4$
11. A rectangular prism has a volume of $8 x^{3}+14 x^{2}+x-2$ and a height of $2 x+1$. Which expression represents the area of the base of the prism?
A $4 x^{2}+5 x-2$
B $4 x^{2}+5 x+2$
C $4 x^{2}+9 x+4$
D $4 x^{2}+9 x+5$
objective 1.2b
12. What is the completely simplified equivalent of $\frac{x^{2}+x-12}{x^{2}-6 x+9}$?

A $\frac{x-3}{x+4}$
B $\frac{x+4}{x-3}$
C $2 x^{2}+5 x-3$
D $2 x^{2}+7 x+21$
13. Which expression represents the result of this subtraction $\frac{3 x-1}{x+2}-\frac{x-2}{x-1}$?

A $\frac{2 x+1}{3}$
B $\frac{2 x+1}{x^{2}+x-2}$
C $\frac{3 x^{2}-4 x+5}{3}$
D $\frac{2 x^{2}-4 x+5}{x^{2}+x-2}$
14. What is the simplified equivalent of $2-x-\frac{1}{3-x}$?

A $\frac{1}{3-2 x}$
B $\frac{x^{2}-x+3}{3-x}$
C $\frac{x^{2}-5 x+5}{3-x}$
D $\frac{x^{2}-5 x+7}{3-x}$
objective 1.3b
15. Which expression is equivalent to $(4 i)^{3}$?

A $-12 i$
B $12 i$
C $-64 i$
D $64 i$
16. A circuit has a current of $(8+7 i)$ amps, and another circuit has a current of ($5-3 i$) amps. What is the difference between the currents of the two circuits?

A (3-4i) amps
B $(3+4 i) \mathrm{amps}$
C ($3-10 i$) amps
D ($3+10 i$) amps
17. Which expression is equivalent to $\sqrt{-6}(\sqrt{-4}-\sqrt{3})$?

A $2 \sqrt{6}+3 \sqrt{2}$
B $-24-6 i \sqrt{3}$
C $2 \sqrt{6}-3 i \sqrt{2}$
D $-2 \sqrt{6}-3 i \sqrt{2}$
18. What is the product of $(2+3 i)$ and $(5-4 i)$?

A $-2-23 i$
B $-2+7 i$
C $22-23 i$
D $22+7 i$
19. What is the completely simplified equivalent of $\frac{2}{5+i}$?

A $\frac{5-i}{12}$
B $\frac{5+i}{12}$
C $\frac{5-i}{13}$
D $\frac{5+i}{13}$
objective 2.1 a
20. What is the parent graph of the following function and what transformations have taken place on it: $y=(x-3)^{2}$?

A The parent graph is $y=x^{2}$, which is shifted 3 units up.
B The parent graph is $y=x^{2}$, which is shifted 3 units down.
C The parent graph is $y=x^{2}$, which is shifted 3 units to the left.
D The parent graph is $y=x^{2}$, which is shifted 3 units to the right.
21. What is the parent function of this graph?

A $f(x)=x^{2}$
B $f(x)=x^{4}$
C $f(x)=-x^{2}$
D $f(x)=-x^{4}$
objective 2.1b
22. If $f(x)=3 x^{2}-2$ and $g(x)=4 x+2$, what is the value of $(f+g)(-1)$?

A -7
B-1
C 1
D 7
23. If $f(x)=x^{2}-1$ and $g(x)=x-1$, what is the value of $\left(\frac{f}{g}\right)(x)$?

A $x-1$
B $x+1$
C $\frac{1}{x-1}$
D $\frac{1}{x+1}$
24.

If $f(x)=x-\frac{1}{2}$ and $g(x)=-2$, which graph corresponds to the function of $(f g)(x)$?

A line R
B line S
C line T
D line U

Objective 2.1c
25. If $f(x)=2 x+7$ and $g(x)=3 x^{2}-1$, what expression represents $(f(g(x))$?

A $6 x^{2}+5$
B $6 x^{2}+12$
C $3 x^{2}-2 x-8$
D $3 x^{2}+2 x+6$
26. If $(f \circ g)(x)=2 x-1$, how might $f(x)$ and $g(x)$ be defined?
$\mathrm{A} f(x)=(x-1)$ and $g(x)=(2 x-1)$
B $f(x)=(x-1)$ and $g(x)=(2 x+1)$
C $f(x)=(2 x-1)$ and $g(x)=(x-1)$
D $f(x)=(2 x+1)$ and $g(x)=(x-1)$
27. Which statement is true for the function $f(x)=\frac{1}{x+4}$?

A 4 is not in the range of the function.
B 4 is not in the domain of the function.
$\mathrm{C}-4$ is not in the range of the function.
D-4 is not in the domain of the function.
28. What is the domain of the function $f(x)=\frac{x+5}{x^{2}+2 x-8}$?

A $\{x: x \neq 0\}$
B $\{x: x \neq-5\}$
C $\{x: x \neq-2,4\}$
D $\{x: x \neq 2,-4\}$
29. Which intervals correctly define the domain of $f(x)=\frac{1}{x+4}-2$?

A $(-\infty, 4)$ and $(4, \infty)$
B $(-\infty,-4)$ and $(4, \infty)$
C $(-\infty,-4)$ and $(-4, \infty)$
D $(-\infty,-4)$ and $(-2, \infty)$
30. Domain: $\{x \mid x \geq 0, x \neq 2\}$ Range: $\{y \mid-3<y \leq 3\}$ Which graph corresponds to the given constraints?
A

C

B

D

31. Which function has the fewest domain restrictions for real numbers?

A $f(x)=\frac{1}{x-1}$
B $f(x)=\frac{1}{x+1}$
C $f(x)=\frac{1}{x^{2}-1}$
D $f(x)=\frac{1}{x^{2}+1}$
Objective 2.1 e
32. What is the inverse of $f(x)=x+1$?

A $f^{-1}(x)=-x-1$
B $f^{-1}(x)=x-1$
C $f^{-1}(x)=\frac{-1}{1-x}$
D $f^{-1}(x)=\frac{1}{1+x}$
33. What is the inverse of the function $f(x)=(x+4)^{2}$?

A $f^{-1}(x)=\sqrt{x}-4$
B $f^{-1}(x)=\frac{1}{(x+4)^{2}}$
C $f^{-1}(x)= \pm \sqrt{x}-4$
D $f^{-1}(x)=(x-4)^{2}$
34. Which graph represents the inverse of $f(x)=2 x$?

C
D

35. Which statement about graphs and their inverse is true?

A They are symmetric about $y=x$.
B They are symmetric about the origin.
C They are symmetric about the x-axis.
D They are symmetric about the y-axis.

Objective 2.2a
36. Profits, P, are equal to sales, S, minus expenses, E. If expenses are equal to travel, T, plus materials, M, which system of equations models this situation?
A $\begin{gathered}P=S-E \\ E=T+M\end{gathered}$
B $\begin{aligned} & P=S+E \\ & E=T+M\end{aligned}$
C $\begin{aligned} & P=S-E \\ & E=T-M\end{aligned}$
D $\begin{aligned} & P=S+E \\ & E=T-M\end{aligned}$
37. Tyrone wants to spend at most $\$ 10,000$ on two televisions, R and S. Each television must cost at least $\$ 3,000$, and television R must cost at least twice as much as television S. Which system of inequalities models the amount of money spent on each television?
$R+S \geq 10,000$
$R+S \leq 10,000$
A $\begin{aligned} & R \geq 2 S\end{aligned}$
$R \geq 3,000$
B $S \geq 2 R$
$R \geq 3,000$
$S \geq 3,000$
$S \geq 3,000$
$R+S \leq 10,000$
$R+S \geq 10,000$
C $\begin{aligned} & R \geq 2 S \\ & R \geq 3,000\end{aligned}$
D $S \geq 2 R$
$R \geq 3,000$
$R \geq 3,000$
$S \geq 3,000$
$S \geq 3,000$
38. Meredith invests $\$ 50,000$ in her new business. It costs the company $\$ 10$ to produce each unit, which is sold for $\$ 15$. Let C represent the cost and R represent the revenue for x units. Which statement is true about the graphs of the equations $C=50,000+10 x$ and $R=15 x$?

A Both slopes are positive.
B Both slopes are negative.
C One slope is positive, and the other is zero.
D one slope is negative, and the other is positive.

Objective 2.2b
39. Which quadrants contain the solutions to this system of inequalities?

$$
\left\{\begin{array}{l}
y-2 x \leq-3 \\
3 y+x \geq-4
\end{array}\right\}
$$

A quadrants I and IV
B quadrants II and III
C quadrants III and IV
D quadrants II, III, and IV
40. What is the solution to this system of equations? $\left\{\begin{array}{l}3 x-y+5=0 \\ 2 x+3 y-4=0\end{array}\right\}$

A $x=-1, y=-2$
B $x=-1, y=2$
C $x=2, y=-1$
D $x=2, y=1$
41. The corners of a triangle are $(2,1),(4,4)$, and $(6,2)$. Which system of inequalities describes the interior of the triangle?
A $\left\{\begin{array}{l}4 y>x+2 \\ 3 y<2 x-1 \\ y<8-x\end{array}\right\}$
B $\left\{\begin{array}{l}4 y>x+2 \\ 2 y<3 x-4 \\ y<8-x\end{array}\right\}$
C $\left\{\begin{array}{l}2 y>x \\ 2 y<3 x-4 \\ y<8-x\end{array}\right\}$
D $\left\{\begin{array}{l}2 y>x \\ 3 y<2 x-1 \\ y<8-x\end{array}\right\}$

Objective 2.2c
42. What is the solution set of this system of equations?

$$
\left\{\begin{array}{l}
x^{2}+y-1=0 \\
x-y+1=0
\end{array}\right\}
$$

A $\{(-1,-1),(-1,0)\}$
B $\{(-1,0),(-1,1)\}$
C $\{(-1,0),(0,1)\}$
D $\{(1,0),(1,1)\}$
43. What is the solution set of this system of equations?

$$
\left\{\begin{array}{l}
y-x=3 \\
x^{2}-7 y+31=0
\end{array}\right\}
$$

A $\{(2,5),(5,2)\}$
B $\{(2,5),(5,8)\}$
C $\{(5,8),(8,5)\}$
D $\{(8,5),(8,8)\}$
44. What is the solution set of this system of equations?

$$
\left\{\begin{array}{l}
x^{2}-y=-3 \\
2 x^{2}-y=-2
\end{array}\right\}
$$

A $\{(-1,-4),(-1,4)\}$
B $\{(-1,-4),(1,4)\}$
C $\{(-1,4),(1,-4)\}$
D $\{(-1,4),(1,4)\}$

Objective 2.3a
45. How many real roots does the function given by the graph have?

A 0 real roots
B 1 real root
C 2 real roots
D 4 real roots
46. What number is added to both sides of the equation $x^{2}-8 x+3=0$ to solve it by completing the square?

A-16
B 16
C -64
D 64
47. What is the solution of $x^{2}+5 x-3=0$?

A $\frac{-5 \pm \sqrt{13}}{2}$
B $\frac{-5 \pm \sqrt{37}}{2}$
C $\frac{5 \pm \sqrt{13}}{2}$
D $\frac{5 \pm \sqrt{37}}{2}$
Objective 2.3 b
48. What is the y-intercept of $f(x)=3 x^{2}-2 x+1$?

A ($0,-1$)
B $(0,1)$
C $(-1,0)$
D (1, 0)
49. What are the coordinates at the minimum point of $f(x)=x^{2}-4 x+3$?

A ($-1,-2$)
B $(-1,2)$
C $(2,-1)$
D $(2,1)$
50. Which function represents this graph?

A $f(x)=\frac{-1}{4} x^{2}-2$
B $f(x)=\frac{1}{4} x^{2}-2$
C $f(x)=-4 x^{2}-2$
D $f(x)=4 x^{2}-2$

