Algebra 1

Name: \qquad
$2^{\text {nd }}$ Semester Final Exam Review
Date: \qquad

Chapter 7

1. Which ordered pair is the solution of the linear system: $y=\frac{1}{2} x+1$ and $y=\frac{3}{2} x+4$?
a) $\left(3, \frac{5}{2}\right)$
b) $\left(-3, \frac{-1}{2}\right)$
c) $\left(\frac{3}{2}, \frac{7}{4}\right)$
d) $(0,1)$

2-3. Solve each system by the graphing method.

2. $x+y=4$
$x-y=2$

3. $2 x+y=6$

$$
x+y=4
$$

4-5. Solve by using the substitution property.
4. $y=2 x$
$4 x-3 y=-4$
5. $x+7=3 y$
$3 x+y=9$

6-7. Solve by the elimination method.

6. $2 x+y=6$
$2 x-y=-2$
7. $3 c+4 d=-2$
$3 c+d=-5$

8-10. Solve each system by using multiplication with the elimination method.
8. $2 x+y=11$
$3 x-4 y=-11$
9. $2 m+3 n=10$
$m+2 n=6$
10. $3 x-2 y=3$
$-6 x+4 y=-6$
11. You pay $\$ 24.50$ for 10 gallons of gas and 1 quart of oil at a gas station. Your friend pays $\$ 22$ for 8 gallons of the same gas and 2 quarts of the same oil. Find the cost of 1 quart of oil.
12. Graph the system of inequalities.

$$
x>-2
$$

$$
y \leq \frac{2}{3} x+1
$$

Chapter 8

Simplify the expression.

1. $(-7)^{9}(-7)^{2}$
2. $\left(5^{3}\right)^{8}$
3.6^{0}
3. $\frac{7^{10}}{7^{4}}$
4. $\left(\frac{a^{8}}{2 b}\right)^{4}$
5. $-16 x^{3} \cdot\left(4 x^{10}\right)^{2}$

Simplify the expression. Do not leave negative exponents in your answers.
$7.2 w^{-7}$
8. $(5 g)^{-3}$
9. $\frac{1}{8 c^{10} d^{-6}}$

Evaluate the expression. Write your answer in scientific notation.
10. $\left(2 \times 10^{-5}\right)\left(3 \times 10^{-2}\right)$
11. $\left(4 \times 10^{13}\right)\left(5 \times 10^{-9}\right)$

Geometric Sequence formula $a_{n}=a_{1} \cdot r^{n-1}$
12.Write an equation for the $n^{\text {th }}$ term of $4,8,16,32, \ldots$.
13. Find the first 5 terms of the sequence of $a_{1}=568$, and $r=\frac{1}{2}$.

Chapter 9

State the degree and leading coefficient of the polynomial and classify it by the number of terms.

1. $4 \mathrm{x}-2 \mathrm{x}^{2}+3$

Degree: \qquad Leading coefficient: \qquad Classification: \qquad

Find the sum or difference.
2. $\left(5 m^{2}+3 m+4\right)-\left(2 m^{2}-6 m+5\right)$
3. $\left(r^{2}-8+4 r^{3}+5 r\right)+\left(-7 r^{3}-3 r^{2}+5\right)$
4. Find the perimeter and area in terms of x of a rectangle whose length is $(3 x-11) \mathrm{cm}$ and whose width is $(4 \mathrm{x}+7) \mathrm{cm}$.
\qquad Area: \qquad

Find the product.
5. $3 x\left(2 x^{2}-4 x+7\right)$
6. $(7 x-1)(9 x-5)$
7. $(5 x+9)^{2}$
8. $(3 x-2)\left(2 x^{2}-5 x+6\right)$

Factor each polynomial using the most appropriate method.
9. $21 a b^{2}+35 a b$
10. $\mathrm{y}^{2}-100$
$11 . x^{2}+8 x+15$
12. $16 \mathrm{x}^{2}-49$
$13 . d^{2}-3 d-28$
14. $7 \mathrm{x}^{2}+8 \mathrm{x}+1$
15. $3 \mathrm{k}^{2}-10 \mathrm{k}-8$
16. $3 y^{5}-30 y^{4}+75 y^{3}$

Solve the equation.
18. $x(2 x-1)(3 x+2)=0$
19. $3 \mathrm{x}^{2}-9 \mathrm{x}=0$
20. $x^{2}+8 x-9=0$
21. $3 x^{2}-28=17 x$

Chapter 10

Graph the function. Find the vertex and axis of symmetry of the quadratic function.

1. $y=4 x^{2}-3$

x					
y					

2. $y=x^{2}+8 x+16$

x					
y					

Solve the equation using square roots.
3. $4(x+2)^{2}=20$
4. $16 x^{2}-9=0$
5. $4 \mathrm{x}^{2}-12=-20$

Solve the quadratic equation by using the quadratic formula. Round your answers to the nearest hundredth if necessary.
10. $3 x^{2}-8 x=-4$
11. $x^{2}-4 x=10$
12. $2 x^{2}+10 x-1=0$

Tell whether the equation has two solutions, one solution, or no solution. (Hint: use the discriminant)
$13.3 x^{2}+6 x+2=0$
14. $5 x^{2}+12 x+10=0$
15. $8 x^{2}-24 x+18=0$

Chapter 11

Solve the equation.

1. $6 \sqrt{x}-30=0$
2. $3 \sqrt{4 x+1}-2=25$
3. $\sqrt{3 x-12}=\sqrt{5 x-26}$

Simplify the expression. Do not use decimals.
4. $6 \sqrt{7}+5 \sqrt{7}-3 \sqrt{2}$
5. $\sqrt{12}+3 \sqrt{4}+\sqrt{27}$

Rewrite each radical using rational (fractional) exponents. Evaluate your answer if possible.
6. $\sqrt[5]{x}$
7. $\sqrt[4]{81 x}$

Simplify each expression.
8. $x^{\frac{1}{2}} \cdot x^{\frac{2}{5}}$
9. $\left(y^{\frac{2}{3}}\right)^{\frac{1}{4}}$

