9.3 Solving Quadratic Equations Using Square Roots

Essential Question How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?

EXPLORATION 1 The Number of Solutions of $ax^2 + c = 0$

Work with a partner. Solve each equation by graphing. Explain how the number of solutions of $ax^2 + c = 0$ relates to the graph of $y = ax^2 + c$.

a. $x^2 - 4 = 0$

c. $x^2 = 0$

b. $2x^2 + 5 = 0$

d. $x^2 - 5 = 0$

EXPLORATION 2

Estimating Solutions

b.

Work with a partner. Complete each table. Use the completed tables to estimate the solutions of $x^2 - 5 = 0$. Explain your reasoning.

a.	х	x ² - 5
	2.21	
	2.22	
	2.23	
	2.24	
	2.25	
	2.26	

x	x ² - 5
-2.21	
-2.22	
-2.23	
-2.24	
-2.25	
-2.26	

ATTENDING TO PRECISION

To be proficient in math, you need to calculate accurately and express numerical answers with a level of precision appropriate for the problem's context.

EXPLORATION 3 Using Technology to Estimate Solutions

Work with a partner. Two equations are equivalent when they have the same solutions.

- **a.** Are the equations $x^2 5 = 0$ and $x^2 = 5$ equivalent? Explain your reasoning.
- **b.** Use the square root key on a calculator to estimate the solutions of $x^2 5 = 0$. Describe the accuracy of your estimates in Exploration 2.
- **c.** Write the exact solutions of $x^2 5 = 0$.

Communicate Your Answer

- 4. How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?
- **5.** Write the exact solutions of each equation. Then use a calculator to estimate the solutions.
 - **a.** $x^2 2 = 0$ **b.** $3x^2 - 18 = 0$ **c.** $x^2 = 8$

9.3 Lesson

Core Vocabulary

Previous square root zero of a function

What You Will Learn

- Solve quadratic equations using square roots.
- Approximate the solutions of quadratic equations.

Solving Quadratic Equations Using Square Roots

Earlier in this chapter, you studied properties of square roots. Now you will use square roots to solve quadratic equations of the form $ax^2 + c = 0$. First isolate x^2 on one side of the equation to obtain $x^2 = d$. Then solve by taking the square root of each side.

S Core Concept

Solutions of $x^2 = d$

- When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When d = 0, $x^2 = d$ has one real solution, x = 0.
- When d < 0, $x^2 = d$ has no real solutions.

ANOTHER WAY

You can also solve $3x^2 - 27 = 0$ by factoring. $3(x^2 - 9) = 0$

3(x-3)(x+3) = 0x = 3 or x = -3

EXAMPLE 1 Solving Quadratic Equations Using Square Roots

a. Solve $3x^2 - 27 = 0$ using square roots.

Write the equation.
Add 27 to each side.
Divide each side by 3.
Take the square root of each side.
Simplify.

- The solutions are x = 3 and x = -3.
- **b.** Solve $x^2 10 = -10$ using square roots.

2 - 10 = -10	Write the equation.
$x^2 = 0$	Add 10 to each side.
x = 0	Take the square root of each side.

The only solution is x = 0.

 x^2

c. Solve $-5x^2 + 11 = 16$ using square roots.

$-5x^2 + 11 = 16$	Write the equation.
$-5x^2 = 5$	Subtract 11 from each side.
$x^2 = -1$	Divide each side by -5 .

The square of a real number cannot be negative. So, the equation has no real solutions.

STUDY TIP

Each side of the equation $(x - 1)^2 = 25$ is a square. So, you can still solve by taking the square root of each side.

Solving a Quadratic Equation Using Square Roots

Solve $(x - 1)^2 = 25$ using square roots.

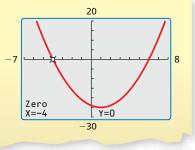
SOLUTION

 $(x-1)^2 = 25$ Write the equation. $x-1 = \pm 5$ Take the square root of each side. $x = 1 \pm 5$ Add 1 to each side.

So, the solutions are x = 1 + 5 = 6 and x = 1 - 5 = -4.

Check

Use a graphing calculator to check your answer. Rewrite the equation as $(x - 1)^2 - 25 = 0$. Graph the related function $f(x) = (x - 1)^2 - 25$ and find the zeros of the function. The zeros are -4 and 6.



Monitoring Progress

Solve the equation using square roots.

1. $-3x^2 = -75$	2. $x^2 + 12 = 10$	3. $4x^2 - 15 = -15$
4. $(x + 7)^2 = 0$	5. $4(x-3)^2 = 9$	6. $(2x + 1)^2 = 36$

Approximating Solutions of Quadratic Equations

EXAMPLE 3 Approximating Solutions of a Quadratic Equation

Solve $4x^2 - 13 = 15$ using square roots. Round the solutions to the nearest hundredth.

SOLUTION

Write the equation.
Add 13 to each side.
Divide each side by 4.
Take the square root of each side.
Use a calculator.

The solutions are $x \approx -2.65$ and $x \approx 2.65$.

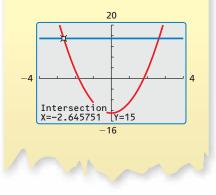
Monitoring Progress I Help in English and Spanish at BigldeasMath.com

Solve the equation using square roots. Round your solutions to the nearest hundredth.

7. $x^2 + 8 = 19$ **8.** $5x^2 - 2 = 0$ **9.** $3x^2 - 30 = 4$

Check

Graph each side of the equation and find the points of intersection. The *x*-values of the points of intersection are about -2.65 and 2.65.



Solving a Real-Life Problem

A touch tank has a height of 3 feet. Its length is three times its width. The volume of the tank is 270 cubic feet. Find the length and width of the tank.

SOLUTION

The length ℓ is three times the width w, so $\ell = 3w$. Write an equation using the formula for the volume of a rectangular prism.

$V = \ell w h$	Write the formula.
270 = 3w(w)(3)	Substitute 270 for V, $3w$ for ℓ , and 3 for h.
$270 = 9w^2$	Multiply.
$30 = w^2$	Divide each side by 9.
$\pm\sqrt{30} = w$	Take the square root of each side.

The solutions are $\sqrt{30}$ and $-\sqrt{30}$. Use the positive solution.

So, the width is $\sqrt{30} \approx 5.5$ feet and the length is $3\sqrt{30} \approx 16.4$ feet.

EXAMPLE 5 Rearranging and Evaluating a Formula

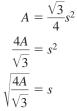
The area *A* of an equilateral triangle with side length *s* is given by the formula $A = \frac{\sqrt{3}}{4}s^2$. Solve the formula for *s*. Then approximate the side length of the traffic sign that has an area of 390 square inches.

SOLUTION

Notice that you can rewrite the formula as $s = \frac{2}{3^{1/4}}\sqrt{A}$, or $s \approx 1.52\sqrt{A}$.

ANOTHER WAY

This can help you efficiently find the value of s for various values of A. **Step 1** Solve the formula for *s*.



Write the formula.

Multiply each side by
$$\frac{4}{\sqrt{3}}$$
.

Take the positive square root of each side.

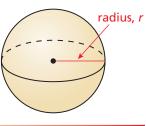
Step 2 Substitute 390 for *A* in the new formula and evaluate.

$$s = \sqrt{\frac{4A}{\sqrt{3}}} = \sqrt{\frac{4(390)}{\sqrt{3}}} = \sqrt{\frac{1560}{\sqrt{3}}} \approx 30$$
 Use a calculator.

The side length of the traffic sign is about 30 inches.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

- **10. WHAT IF?** In Example 4, the volume of the tank is 315 cubic feet. Find the length and width of the tank.
- **11.** The surface area *S* of a sphere with radius *r* is given by the formula $S = 4\pi r^2$. Solve the formula for *r*. Then find the radius of a globe with a surface area of 804 square inches.

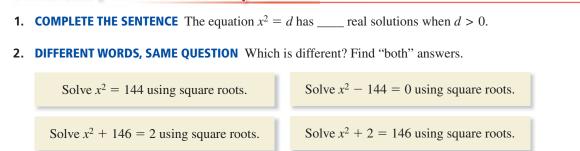


YIELD

INTERPRETING MATHEMATICAL RESULTS

Use the positive square root because negative solutions do not make sense in this context. Length and width cannot be negative.

-Vocabulary and Core Concept Check



Monitoring Progress and Modeling with Mathematics

In Exercises 3–8, determine the number of real solutions of the equation. Then solve the equation using square roots.

3.	$x^2 = 25$	4.	$x^2 = -36$

5. $x^2 = -21$ **6.** $x^2 = 400$ **7.** $x^2 = 0$ **8.** $x^2 = 169$

In Exercises 9–18, solve the equation using square roots. (See Example 1.)

9.	$x^2 - 16 = 0$	10.	$x^2 + 6 = 0$
11.	$3x^2 + 12 = 0$	12.	$x^2 - 55 = 26$
13.	$2x^2 - 98 = 0$	14.	$-x^2 + 9 = 9$
15.	$-3x^2 - 5 = -5$	16.	$4x^2 - 371 = 29$
17.	$4x^2 + 10 = 11$	18.	$9x^2 - 35 = 14$

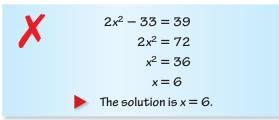
In Exercises 19–24, solve the equation using square roots. (*See Example 2.*)

19.	$(x+3)^2 = 0$	20.	$(x-1)^2 = 4$
21.	$(2x-1)^2 = 81$	22.	$(4x+5)^2 = 9$
23.	$9(x+1)^2 = 16$	24.	$4(x-2)^2 = 25$

In Exercises 25–30, solve the equation using square roots. Round your solutions to the nearest hundredth. (*See Example 3.*)

- **25.** $x^2 + 6 = 13$ **26.** $x^2 + 11 = 24$
- **27.** $2x^2 9 = 11$ **28.** $5x^2 + 2 = 6$
 - Section 9.3

- **29.** $-21 = 15 2x^2$ **30.** $2 = 4x^2 5$
- **31. ERROR ANALYSIS** Describe and correct the error in solving the equation $2x^2 33 = 39$ using square roots.

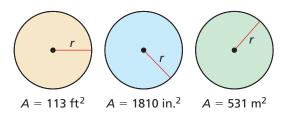


32. MODELING WITH MATHEMATICS An in-ground pond has the shape of a rectangular prism. The pond has a depth of 24 inches and a volume of 72,000 cubic inches. The length of the pond is two times its width. Find the length and width of the pond. (See Example 4.)

33. MODELING WITH MATHEMATICS A person sitting in the top row of the bleachers at a sporting event drops a pair of sunglasses from a height of 24 feet. The function $h = -16x^2 + 24$ represents the height *h* (in feet) of the sunglasses after *x* seconds. How long does it take the sunglasses to hit the ground?

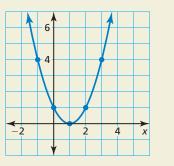
- **34.** MAKING AN ARGUMENT Your friend says that the solution of the equation $x^2 + 4 = 0$ is x = 0. Your cousin says that the equation has no real solutions. Who is correct? Explain your reasoning.
- **35. MODELING WITH MATHEMATICS** The design of a square rug for your living room is shown. You want the area of the inner square to be 25% of the total area of the rug. Find the side length *x* of the inner square.

- **36. MATHEMATICAL CONNECTIONS** The area *A* of a circle with radius *r* is given by the formula $A = \pi r^2$. (*See Example 5.*)
 - **a.** Solve the formula for *r*.
 - **b.** Use the formula from part (a) to find the radius of each circle.



- **c.** Explain why it is beneficial to solve the formula for *r* before finding the radius.
- **37. WRITING** How can you approximate the roots of a quadratic equation when the roots are not integers?
- **38.** WRITING Given the equation $ax^2 + c = 0$, describe the values of *a* and *c* so the equation has the following number of solutions.
 - a. two real solutions
 - **b.** one real solution
 - c. no real solutions

- **39. REASONING** Without graphing, where do the graphs of $y = x^2$ and y = 9 intersect? Explain.
- **40.** HOW DO YOU SEE IT? The graph represents the function $f(x) = (x 1)^2$. How many solutions does the equation $(x 1)^2 = 0$ have? Explain.



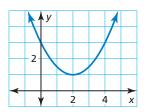
- **41. REASONING** Solve $x^2 = 1.44$ without using a calculator. Explain your reasoning.
- **42. THOUGHT PROVOKING** The quadratic equation $ax^2 + bx + c = 0$

can be rewritten in the following form.

$$\left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2}$$

Use this form to write the solutions of the equation.

43. REASONING An equation of the graph shown is $y = \frac{1}{2}(x - 2)^2 + 1$. Two points on the parabola have *y*-coordinates of 9. Find the *x*-coordinates of these points.



44. CRITICAL THINKING Solve each equation without graphing.

a. $x^2 - 12x + 36 = 64$ **b.** $x^2 + 14x + 49 = 16$

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Factor the polynomial.	(Section 7.7)	
45. $x^2 + 8x + 16$	46. $x^2 - 4x + 4$	47. $x^2 - 14x + 49$
48. $x^2 + 18x + 81$	49. $x^2 + 12x + 36$	50. $x^2 - 22x + 121$