LOOKING FOR REGULARITY IN REPEATED REASONING

To be proficient in math, you need to notice when calculations are repeated and look both for general methods and for shortcuts.

Essential Question
How can you use a geometric sequence to
describe a pattern?
In a geometric sequence, the ratio between each pair of consecutive terms is the same. This ratio is called the common ratio.

EXPLORATION 1 Describing Calculator Patterns

Work with a partner. Enter the keystrokes on a calculator and record the results in the table. Describe the pattern.
a. Step 1

Step	1	2	3	4	5
Calculator display					

Step	1	2	3	4	5
Calculator display					

c. Use a calculator to make your own sequence. Start with any number and multiply by 3 each time. Record your results in the table.

Step	1	2	3	4	5
Calculator display					

d. Part (a) involves a geometric sequence with a common ratio of 2 . What is the common ratio in part (b)? part (c)?

EXPLORATION 2 Folding a Sheet of Paper

Work with a partner. A sheet of paper is about 0.1 millimeter thick.
a. How thick will it be when you fold it in half once? twice? three times?
b. What is the greatest number of times you can fold a piece of paper in half? How thick is the result?
c. Do you agree with the statement below? Explain your reasoning.
"If it were possible to fold the paper in half 15 times, it would be taller than you."

Communicate Your Answer

3. How can you use a geometric sequence to describe a pattern?
4. Give an example of a geometric sequence from real life other than paper folding.

6.6 Lesson
 What You Will Learn

Core Vocabulary

geometric sequence, p. 332
common ratio, p. 332

Previous

arithmetic sequence
common difference
Identify geometric sequences.
$>$ Extend and graph geometric sequences.
Write geometric sequences as functions.

Identifying Geometric Sequences

G) Core Concept

Geometric Sequence

In a geometric sequence, the ratio between each pair of consecutive terms is the same. This ratio is called the common ratio. Each term is found by multiplying the previous term by the common ratio.

EXAMPLE 1 Identifying Geometric Sequences

Decide whether each sequence is arithmetic, geometric, or neither. Explain your reasoning.
a. $120,60,30,15, \ldots$
b. $2,6,11,17, \ldots$

SOLUTION

a. Find the ratio between each pair of consecutive terms.

So, the sequence is geometric.
b. Find the ratio between each pair of consecutive terms.

Find the difference between each pair of consecutive terms.

There is no common difference, so the sequence is not arithmetic.

So, the sequence is neither geometric nor arithmetic.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Decide whether the sequence is arithmetic, geometric, or neither. Explain your reasoning.

1. $5,1,-3,-7, \ldots$
2. $1024,128,16,2, \ldots$
3. $2,6,10,16, \ldots$

Extending and Graphing Geometric Sequences

EXAMPLE 2 Extending Geometric Sequences

Write the next three terms of each geometric sequence.
a. $3,6,12,24, \ldots$
b. $64,-16,4,-1, \ldots$

SOLUTION

Use tables to organize the terms and extend each sequence.

a. | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | 3 | 6 | 12 | 24 | 48 | 96 | 192 |

Each term is twice the previous
term. So, the common ratio is 2.

Multiply a term by 2 to find the next term.

The next three terms are 48, 96, and 192.
b.

Position	1	2	3	4	5	6	7
Term	64	-16	4	-1	$\frac{1}{4}$	$-\frac{1}{16}$	$\frac{1}{64}$
$\times\left(-\frac{1}{4}\right) \times\left(-\frac{1}{4}\right)$							

Multiply a term by $-\frac{1}{4}$ to find the

The next three terms are $\frac{1}{4},-\frac{1}{16}$, and $\frac{1}{64}$.

STUDY TIP

The points of any geometric sequence with a positive common ratio lie on an exponential curve.

LOOKING FOR STRUCTURE

When the terms of a geometric sequence alternate between positive and negative terms, or vice versa, the common ratio is negative.

EXAMPLE 3 Graphing a Geometric Sequence

Graph the geometric sequence $32,16,8,4,2, \ldots$ What do you notice?

SOLUTION

Make a table. Then plot the ordered pairs $\left(n, a_{n}\right)$.

Position, \boldsymbol{n}	1	2	3	4	5
Term, $\boldsymbol{a}_{\boldsymbol{n}}$	32	16	8	4	2

Monitoring Progress

Write the next three terms of the geometric sequence. Then graph the sequence.
4. $1,3,9,27, \ldots$
5. $2500,500,100,20, \ldots$
6. $80,-40,20,-10, \ldots$
7. $-2,4,-8,16, \ldots$

Writing Geometric Sequences as Functions

Because consecutive terms of a geometric sequence have a common ratio, you can use the first term a_{1} and the common ratio r to write an exponential function that describes a geometric sequence. Let $a_{1}=1$ and $r=5$.

Position, \boldsymbol{n}	Term, $\boldsymbol{a}_{\boldsymbol{n}}$	Written using $\boldsymbol{a}_{\mathbf{1}}$ and \boldsymbol{r}	Numbers
1	first term, a_{1}	a_{1}	1
2	second term, a_{2}	$a_{1} r$	$1 \cdot 5=5$
3	third term, a_{3}	$a_{1} r^{2}$	$1 \cdot 5^{2}=25$
4	fourth term, a_{4}	$a_{1} r^{3}$	$1 \cdot 5^{3}=125$
\vdots	\vdots	\vdots	\vdots
n	nth term, a_{n}	$a_{1} r^{n-1}$	$1 \cdot 5^{n-1}$

STUDY TIP

Notice that the equation $a_{n}=a_{1} r^{n-1}$ is of the form $y=a b^{x}$.

G) Core Concept

Equation for a Geometric Sequence

Let a_{n} be the nth term of a geometric sequence with first term a_{1} and common ratio r. The nth term is given by

$$
a_{n}=a_{1} r^{n-1}
$$

EXAMPLE 4 Finding the \boldsymbol{n} th Term of a Geometric Sequence

Write an equation for the nth term of the geometric sequence $2,12,72,432, \ldots$ Then find a_{10}.

SOLUTION

The first term is 2 , and the common ratio is 6 .

$$
\begin{array}{ll}
a_{n}=a_{1} r^{n-1} & \text { Equation for a geometric sequence } \\
a_{n}=2(6)^{n-1} & \text { Substitute } 2 \text { for } a_{1} \text { and } 6 \text { for } r .
\end{array}
$$

Use the equation to find the 10th term.

$$
\begin{aligned}
a_{n} & =2(6)^{n-1} & & \text { Write the equation. } \\
a_{10} & =2(6)^{10-1} & & \text { Substitute } 10 \text { for } n . \\
& =20,155,392 & & \text { Simplify. }
\end{aligned}
$$

The 10th term of the geometric sequence is $20,155,392$.

Monitoring Progress

Write an equation for the \boldsymbol{n} th term of the geometric sequence. Then find \boldsymbol{a}_{7}.
8. $1,-5,25,-125, \ldots$
9. $13,26,52,104, \ldots$
10. $432,72,12,2, \ldots$
11. $4,10,25,62.5, \ldots$

You can rewrite the equation for a geometric sequence with first term a_{1} and common ratio r in function notation by replacing a_{n} with $f(n)$.

$$
f(n)=a_{1} r^{n-1}
$$

The domain of the function is the set of positive integers.

EXAMPLE 5 Modeling with Mathematics

Clicking the zoom-out button on a mapping website doubles the side length of the square map. After how many clicks on the zoom-out

Zoom-out clicks	1	2	3
Map side length (miles)	5	10	20

SOLUTION

1. Understand the Problem You know that the side length of the square map doubles after each click on the zoom-out button. So, the side lengths of the map represent the terms of a geometric sequence. You need to find the number of clicks it takes for the side length of the map to be 640 miles.
2. Make a Plan Begin by writing a function f for the nth term of the geometric sequence. Then find the value of n for which $f(n)=640$.
3. Solve the Problem The first term is 5, and the common ratio is 2 .

$$
\begin{array}{ll}
f(n)=a_{1} r^{n-1} & \text { Function for a geometric sequence } \\
f(n)=5(2)^{n-1} & \text { Substitute } 5 \text { for } a_{1} \text { and } 2 \text { for } r .
\end{array}
$$

The function $f(n)=5(2)^{n-1}$ represents the geometric sequence. Use this function to find the value of n for which $f(n)=640$. So, use the equation $640=5(2)^{n-1}$ to write a system of equations.

$$
\begin{array}{ll}
y=5(2)^{n-1} & \text { Equation 1 } \\
y=640 & \text { Equation 2 }
\end{array}
$$

Then use a graphing calculator to graph the equations and find the point of intersection. The point of intersection is $(8,640)$.

You can also use the table feature of a graphing calculator to find the value of n for which $f(n)=640$.

X	Y 1	Y 2
3	20	640
4	40	640
5	80	640
6	160	640
7	320	640
8	640	640
9	1280	640
$X=8$		

USING

APPROPRIATE TOOLS STRATEGICALLY

So, after eight clicks, the side length of the map is 640 miles.
4. Look Back Find the value of n for which $f(n)=640$ algebraically.

$$
\begin{aligned}
640 & =5(2)^{n-1} & & \text { Write the equation. } \\
128 & =(2)^{n-1} & & \text { Divide each side by } 5 . \\
2^{7} & =(2)^{n-1} & & \text { Rewrite } 128 \text { as } 2^{7} . \\
7 & =n-1 & & \text { Equate the exponents. } \\
8 & =n & & \text { Add } 1 \text { to each side. }
\end{aligned}
$$

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com12. WHAT IF? After how many clicks on the zoom-out button is the side length of the map 2560 miles?

- Vocabulary and Core Concept Check

1. WRITING Compare the two sequences.

$$
2,4,6,8,10, \ldots \quad 2,4,8,16,32, \ldots
$$

2. CRITICAL THINKING Why do the points of a geometric sequence lie on an exponential curve only when the common ratio is positive?

Monitoring Progress and Modeling with Mathematics

In Exercises 3-8, find the common ratio of the geometric sequence.
3. $4,12,36,108, \ldots$
4. $36,6,1, \frac{1}{6}, \ldots$
5. $\frac{3}{8},-3,24,-192, \ldots$
6. $0.1,1,10,100, \ldots$
7. $128,96,72,54, \ldots$
8. $-162,54,-18,6, \ldots$

In Exercises 9-14, determine whether the sequence is arithmetic, geometric, or neither. Explain your reasoning. (See Example 1.)
9. $-8,0,8,16, \ldots$
10. $-1,4,-7,10, \ldots$
11. $9,14,20,27, \ldots$
12. $\frac{3}{49}, \frac{3}{7}, 3,21, \ldots$
13. $192,24,3, \frac{3}{8}, \ldots$
14. $-25,-18,-11,-4, \ldots$

In Exercises 15-18, determine whether the graph represents an arithmetic sequence, a geometric sequence, or neither. Explain your reasoning.
15.

16.

17.

18.

In Exercises 19-24, write the next three terms of the geometric sequence. Then graph the sequence.
(See Examples 2 and 3.)
19. $5,20,80,320, \ldots \quad$ 20. $-3,12,-48,192, \ldots$
21. $81,-27,9,-3, \ldots$
22. $-375,-75,-15,-3, \ldots$
23. $32,8,2, \frac{1}{2}, \ldots$
24. $\frac{16}{9}, \frac{8}{3}, 4,6, \ldots$

In Exercises 25-32, write an equation for the \boldsymbol{n} th term of the geometric sequence. Then find a_{6}.
(See Example 4.)
25. $2,8,32,128, \ldots$
26. $0.6,-3,15,-75, \ldots$
27. $-\frac{1}{8},-\frac{1}{4},-\frac{1}{2},-1, \ldots$
28. $0.1,0.9,8.1,72.9, \ldots$
29.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	7640	764	76.4	7.64

30.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	-192	48	-12	3

31.

32.

33. PROBLEM SOLVING A badminton tournament begins with 128 teams. After the first round, 64 teams remain. After the second round, 32 teams remain. How many teams remain after the third, fourth, and fifth rounds?
34. PROBLEM SOLVING The graphing calculator screen displays an area of 96 square units. After you zoom out once, the area is 384 square units. After you zoom out a second time, the area is 1536 square units. What is the screen area after you zoom out four times?

35. ERROR ANALYSIS Describe and correct the error in writing the next three terms of the geometric sequence.

The next three terms are $-2,4$, and -8 .
36. ERROR ANALYSIS Describe and correct the error in writing an equation for the nth term of the geometric sequence.

$$
\begin{aligned}
& -2,-12,-72,-432, \ldots \\
& \text { The first term is }-2 \text {, and the } \\
& \text { common ratio is }-6 \text {. } \\
& a_{n}=a_{1} r^{n-1} \\
& a_{n}=-2(-6)^{n-1}
\end{aligned}
$$

37. MODELING WITH MATHEMATICS The distance (in millimeters) traveled by a swinging pendulum decreases after each swing, as shown in the table. (See Example 5.)

Swing	1	2	3
Distance (in millimeters)	625	500	400

a. Write a function that represents the distance the pendulum swings on its nth swing.
b. After how many swings is the distance 256 millimeters?
38. MODELING WITH MATHEMATICS You start a chain email and send it to six friends. The next day, each of your friends forwards the email to six people. The process continues for a few days.
a. Write a function that represents the number of people who have received the email after n days.
b. After how many days will 1296 people have received the email?

MATHEMATICAL CONNECTIONS In Exercises 39 and 40, (a) write a function that represents the sequence of figures and (b) describe the 10th figure in the sequence.
39.

40.

41. REASONING Write a sequence that represents the number of teams that have been eliminated after n rounds of the badminton tournament in Exercise 33. Determine whether the sequence is arithmetic, geometric, or neither. Explain your reasoning.
42. REASONING Write a sequence that represents the perimeter of the graphing calculator screen in Exercise 34 after you zoom out n times. Determine whether the sequence is arithmetic, geometric, or neither. Explain your reasoning.
43. WRITING Compare the graphs of arithmetic sequences to the graphs of geometric sequences.
44. MAKING AN ARGUMENT You are given two consecutive terms of a sequence.

$$
\ldots,-8,0, \ldots
$$

Your friend says that the sequence is not geometric. A classmate says that is impossible to know given only two terms. Who is correct? Explain.
45. CRITICAL THINKING Is the sequence shown an arithmetic sequence? a geometric sequence? Explain your reasoning.

$$
3,3,3,3, \ldots
$$

46. HOW DO YOU SEE IT? Without performing any calculations, match each equation with its graph. Explain your reasoning.
a. $a_{n}=20\left(\frac{4}{3}\right)^{n-1}$
b. $a_{n}=20\left(\frac{3}{4}\right)^{n-1}$
A.

47. REPEATED REASONING A soup kitchen makes 16 gallons of soup. Each day, a quarter of the soup is served and the rest is saved for the next day.
a. Write the first five terms of the sequence of the number of fluid ounces of soup left each day.
b. Write an equation that represents the nth term of the sequence.
c. When is all the soup gone? Explain.

48. THOUGHT PROVOKING Find the sum of the terms of the geometric sequence.

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{2^{n-1}}, \ldots
$$

Explain your reasoning. Write a different infinite geometric sequence that has the same sum.
53. OPEN-ENDED Write a geometric sequence in which $a_{2}<a_{1}<a_{3}$.
54. NUMBER SENSE Write an equation that represents the nth term of each geometric sequence shown.

\boldsymbol{n}	1	2	3	4
$\boldsymbol{a}_{\boldsymbol{n}}$	2	6	18	54

\boldsymbol{n}	1	2	3	4
$\boldsymbol{b}_{\boldsymbol{n}}$	1	5	25	125

a. Do the terms $a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}, \ldots$ form a geometric sequence? If so, how does the common ratio relate to the common ratios of the sequences above?
b. Do the terms $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \ldots$ form a geometric sequence? If so, how does the common ratio relate to the common ratios of the sequences above?

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Use residuals to determine whether the model is a good fit for the data in the table. Explain. (Section 4.5)
55. $y=3 x-8$
56. $y=-5 x+1$

x	0	1	2	3	4	5	6
y	-10	-2	-1	2	1	7	10

x	-3	-2	-1	0	1	2	3
y	6	4	6	1	2	-4	-3

