4.6 Arithmetic Sequences

Essential Question
How can you use an arithmetic sequence to describe a pattern?

An arithmetic sequence is an ordered list of numbers in which the difference between each pair of consecutive terms, or numbers in the list, is the same.

EXPLORATION 1 Describing a Pattern

Work with a partner. Use the figures to complete the table. Plot the points given by your completed table. Describe the pattern of the y-values.

LOOKING FOR A PATTERN

To be proficient in math, you need to look closely to discern patterns and structure.
a. $n=1$
$n=2$
$n=3$

Number of stars, \boldsymbol{n}	1	2	3	4	5
Number of sides, \boldsymbol{y}					

$n=5$

b. $n=1$

$n=4$
$n=5$

\boldsymbol{n}	1	2	3	4	5
Number of circles, \boldsymbol{y}					

c. $n=1 \quad n=2$
$n=3$

Communicate Your Answer

2. How can you use an arithmetic sequence to describe a pattern? Give an example from real life.
3. In chemistry, water is called $\mathrm{H}_{2} \mathrm{O}$ because each molecule of water has two hydrogen atoms and one oxygen atom. Describe the pattern shown below. Use the pattern to determine the number of atoms in 23 molecules.

4.6 Lesson
 What You Will Learn

Core Vocabulary

Write the terms of arithmetic sequences.

- Graph arithmetic sequences.
$>$ Write arithmetic sequences as functions.
sequence, p. 210
term, p. 210
arithmetic sequence, p. 210
common difference, p. 210

Previous

point-slope form
function notation

Writing the Terms of Arithmetic Sequences

A sequence is an ordered list of numbers. Each number in a sequence is called a term. Each term a_{n} has a specific position n in the sequence.

Core Concept

Arithmetic Sequence

In an arithmetic sequence, the difference between each pair of consecutive terms is the same. This difference is called the common difference. Each term is found by adding the common difference to the previous term.

EXAMPLE 1 Extending an Arithmetic Sequence

Write the next three terms of the arithmetic sequence.

$$
-7,-14,-21,-28, \ldots
$$

SOLUTION

Use a table to organize the terms and find the pattern.

Position	1	2	3	4
Term	-7	-14	-21	-28
$+(-7)$				

Each term is 7 less than the previous term. So, the common difference is -7 .
Add -7 to a term to find the next term.

Position	1	2	3	4	5	6	7
Term	-7	-14	-21	-28	-35	-42	-49

The next three terms are $-35,-42$, and -49 .

Monitoring Progress (D)) Help in English and Spanish at BigldeasMath.com

Write the next three terms of the arithmetic sequence.

1. $-12,0,12,24, \ldots$
2. $0.2,0.6,1,1.4, \ldots$
3. $4,3 \frac{3}{4}, 3 \frac{1}{2}, 3 \frac{1}{4}, \ldots$

Graphing Arithmetic Sequences

To graph a sequence, let a term's position number n in the sequence be the x-value. The term a_{n} is the corresponding y-value. Plot the ordered pairs (n, a_{n}).

EXAMPLE 2 Graphing an Arithmetic Sequence

Graph the arithmetic sequence $4,8,12,16, \ldots$. What do you notice?

SOLUTION

Make a table. Then plot the ordered pairs $\left(n, a_{n}\right)$.

Position, \boldsymbol{n}	Term, $\boldsymbol{a}_{\boldsymbol{n}}$
1	4
2	8
3	12
4	16

The points lie on a line.

EXAMPLE 3 Identifying an Arithmetic Sequence from a Graph

Does the graph represent an arithmetic sequence? Explain.

SOLUTION

Make a table to organize the ordered pairs. Then determine whether there is a
 common difference.

Position, \boldsymbol{n}	1	2	3	4
Term, $a_{\boldsymbol{n}}$	15	12	9	6
$+(-3)$				

Each term is 3 less than the previous term. So, the common difference is -3 .

Consecutive terms have a common difference of -3 . So, the graph represents the arithmetic sequence $15,12,9,6, \ldots$.

Monitoring Progress \quad) Help in English and Spanish at BigldeasMath.com

Graph the arithmetic sequence. What do you notice?
4. $3,6,9,12, \ldots$
5. $4,2,0,-2, \ldots$
6. $1,0.8,0.6,0.4, \ldots$
7. Does the graph shown represent an arithmetic sequence? Explain.

ANOTHER WAY

An arithmetic sequence is a linear function whose domain is the set of positive integers. You can think of d as the slope and ($1, a_{1}$) as a point on the graph of the function. An equation in point-slope form for the function is

$$
a_{n}-a_{1}=d(n-1)
$$

This equation can be rewritten as

$$
a_{n}=a_{1}+(n-1) d .
$$

STUDY TIP

Notice that the equation in Example 4 is of the form $y=m x+b$, where y is replaced by a_{n} and x is replaced by n.

Writing Arithmetic Sequences as Functions

Because consecutive terms of an arithmetic sequence have a common difference, the sequence has a constant rate of change. So, the points represented by any arithmetic sequence lie on a line. You can use the first term and the common difference to write a linear function that describes an arithmetic sequence. Let $a_{1}=4$ and $d=3$.

Position, $n \quad$ Term, $a_{n} \quad$ Written using a_{1} and $d \quad$ Numbers

1	first term, a_{1}	a_{1}	4
2	second term, a_{2}	$a_{1}+d$	$4+3=7$
3	third term, a_{3}	$a_{1}+2 d$	$4+2(3)=10$
4	fourth term, a_{4}	$a_{1}+3 d$	$4+3(3)=13$
\vdots	\vdots	\vdots	\vdots
n	nth term, a_{n}	$a_{1}+(n-1) d$	$4+(n-1)(3)$

E Core Concept

Equation for an Arithmetic Sequence

Let a_{n} be the nth term of an arithmetic sequence with first term a_{1} and common difference d. The nth term is given by

$$
a_{n}=a_{1}+(n-1) d .
$$

EXAMPLE 4 Finding the \boldsymbol{n} th Term of an Arithmetic Sequence

Write an equation for the nth term of the arithmetic sequence $14,11,8,5, \ldots$. Then find a_{50}.

SOLUTION

The first term is 14 , and the common difference is -3 .

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \text { Equation for an arithmetic sequence } \\
a_{n}=14+(n-1)(-3) & \text { Substitute } 14 \text { for } a_{1} \text { and }-3 \text { for } d . \\
a_{n}=-3 n+17 & \text { Simplify. }
\end{array}
$$

Use the equation to find the 50th term.

$$
\begin{aligned}
a_{n} & =-3 n+17 & & \text { Write the equation. } \\
a_{50} & =-3(50)+17 & & \text { Substitute } 50 \text { for } n . \\
& =-133 & & \text { Simplify. }
\end{aligned}
$$

The 50th term of the arithmetic sequence is -133 .

Monitoring Progress
 Help in English and Spanish at BigIdeasMath.com

Write an equation for the \boldsymbol{n} th term of the arithmetic sequence. Then find $\boldsymbol{a}_{\mathbf{2 5}}{ }^{\circ}$
8. $4,5,6,7, \ldots$
9. $8,16,24,32, \ldots$
10. $1,0,-1,-2, \ldots$

You can rewrite the equation for an arithmetic sequence with first term a_{1} and common difference d in function notation by replacing a_{n} with $f(n)$.

$$
f(n)=a_{1}+(n-1) d
$$

The domain of the function is the set of positive integers.

EXAMPLE 5 Writing Real-Life Functions

Online bidding for a purse increases by $\$ 5$ for each bid after the $\$ 60$ initial bid.

Bid number	1	2	3	4
Bid amount	$\$ 60$	$\$ 65$	$\$ 70$	$\$ 75$

a. Write a function that represents the arithmetic sequence.
b. Graph the function.
c. The winning bid is $\$ 105$. How many bids were there?

SOLUTION

a. The first term is 60 , and the common difference is 5 .

$$
\begin{array}{ll}
f(n)=a_{1}+(n-1) d & \\
f(n)=60+(n-1) 5 & \text { Sunction for an arithmetic sequence } \\
f(n)=5 n+55 & \\
\text { Simplify. } 60 \text { for } a_{1} \text { and } 5 \text { for } d .
\end{array}
$$

The function $f(n)=5 n+55$ represents the arithmetic sequence.

REMEMBER
The domain is the set of positive integers.
b. Make a table. Then plot the ordered pairs $\left(n, a_{n}\right)$.

Bid number, \boldsymbol{n}	Bid amount, $\boldsymbol{a}_{\boldsymbol{n}}$
1	60
2	65
3	70
4	75

c. Use the function to find the value of n for which $f(n)=105$.

$$
\begin{aligned}
f(n) & =5 n+55 & & \text { Write the function. } \\
105 & =5 n+55 & & \text { Substitute } 105 \text { for } f(n) . \\
10 & =n & & \text { Solve for } n .
\end{aligned}
$$

There were 10 bids.

Games	Total cost
1	$\$ 7$
2	$\$ 9$
3	$\$ 11$
4	$\$ 13$

Monitoring Progress (i)) Help in Engilish and Spanish at BigddeasMath.com

11. A carnival charges $\$ 2$ for each game after you pay a $\$ 5$ entry fee.
a. Write a function that represents the arithmetic sequence.
b. Graph the function.
c. How many games can you play when you take $\$ 29$ to the carnival?

- Vocabulary and Core Concept Check

1. WRITING Describe the graph of an arithmetic sequence.
2. DIFFERENT WORDS, SAME QUESTION Consider the arithmetic sequence represented by the graph. Which is different? Find "both" answers.

Find the slope of the linear function.

Find the difference between the terms a_{2} and a_{4}.

Find the difference between consecutive terms of the arithmetic sequence.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, write the next three terms of the arithmetic sequence.
3. First term: 2

Common difference: 13
4. First term: 18

Common difference: -6

In Exercises 5-10, find the common difference of the arithmetic sequence.
5. $13,18,23,28, \ldots$
6. $175,150,125,100, \ldots$
7. $-16,-12,-8,-4$
8. $4,3 \frac{2}{3}, 3 \frac{1}{3}, 3, \ldots$
9. $6.5,5,3.5,2, \ldots$
10. $-16,-7,2,11, \ldots$

In Exercises 11-16, write the next three terms of the arithmetic sequence. (See Example 1.)
11. $19,22,25,28, \ldots$
12. $1,12,23,34, \ldots$
13. $16,21,26,31, \ldots$
14. $60,30,0,-30, \ldots$
15. $1.3,1,0.7,0.4, \ldots$
16. $\frac{5}{6}, \frac{2}{3}, \frac{1}{2}, \frac{1}{3}, \ldots$

In Exercises 17-22, graph the arithmetic sequence. (See Example 2.)
17. $4,12,20,28, \ldots$
18. $-15,0,15,30, \ldots$
19. $-1,-3,-5,-7, \ldots$
20. $2,19,36,53, \ldots$
21. $0,4 \frac{1}{2}, 9,13 \frac{1}{2}, \ldots$
22. $6,5.25,4.5,3.75, \ldots$

In Exercises 23-26, determine whether the graph represents an arithmetic sequence. Explain. (See Example 3.)
23.

24.

25.

26.

In Exercises 27-30, determine whether the sequence is arithmetic. If so, find the common difference.
27. $13,26,39,52, \ldots$
28. $5,9,14,20, \ldots$
29. $48,24,12,6, \ldots$
30. $87,81,75,69, \ldots$
31. FINDING A PATTERN Write a sequence that represents the number of smiley faces in each group. Is the sequence arithmetic? Explain.

32. FINDING A PATTERN Write a sequence that represents the sum of the numbers in each roll. Is the sequence arithmetic? Explain.

In Exercises 33-38, write an equation for the $\boldsymbol{n} \boldsymbol{t h}$ term of the arithmetic sequence. Then find a_{10}. (See Example 4.)
33. $-5,-4,-3,-2, \ldots$
34. $-6,-9,-12,-15, \ldots$
35. $\frac{1}{2}, 1,1 \frac{1}{2}, 2, \ldots$
36. $100,110,120,130, \ldots$
37. $10,0,-10,-20, \ldots$
38. $\frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \ldots$
39. ERROR ANALYSIS Describe and correct the error in finding the common difference of the arithmetic sequence.

$$
\begin{aligned}
& \text { The common difference is } 1 \text {. }
\end{aligned}
$$

40. ERROR ANALYSIS Describe and correct the error in writing an equation for the nth term of the arithmetic sequence.

$$
\begin{aligned}
& 14,22,30,38, \ldots \\
& a_{n}=a_{1}+n d \\
& a_{n}=14+8 n
\end{aligned}
$$

41. NUMBER SENSE The first term of an arithmetic sequence is 3 . The common difference of the sequence is 1.5 times the first term. Write the next three terms of the sequence. Then graph the sequence.
42. NUMBER SENSE The first row of a dominoes display has 10 dominoes. Each row after the first has two more dominoes than the row before it. Write the first five terms of the sequence that represents the number of dominoes in each row. Then graph the sequence.

REPEATED REASONING In Exercises 43 and 44, (a) draw the next three figures in the sequence and (b) describe the 20th figure in the sequence.
43.

44.

45. MODELING WITH MATHEMATICS The total number of babies born in a country each minute after midnight January 1st can be estimated by the sequence shown in the table. (See Example 5.)

Minutes after midnight January 1st	1	2	3	4
Total babies born	5	10	15	20

a. Write a function that represents the arithmetic sequence.
b. Graph the function.
c. Estimate how many minutes after midnight January 1st it takes for 100 babies to be born.
46. MODELING WITH MATHEMATICS The amount of money a movie earns each week after its release can be approximated by the sequence shown in the graph.
a. Write a function that represents the arithmetic sequence.
b. In what week does the movie earn $\$ 16$ million?
c. How much money does the movie earn overall?

MATHEMATICAL CONNECTIONS In Exercises 47 and 48, each small square represents 1 square inch. Determine whether the areas of the figures form an arithmetic sequence. If so, write a function f that represents the arithmetic sequence and find $f(30)$.
47.

48.

49. REASONING Is the domain of an arithmetic sequence discrete or continuous? Is the range of an arithmetic sequence discrete or continuous?
50. MAKING AN ARGUMENT Your friend says that the range of a function that represents an arithmetic sequence always contains only positive numbers or only negative numbers. Your friend claims this is true because the domain is the set of positive integers and the output values either constantly increase or constantly decrease. Is your friend correct? Explain.
51. OPEN-ENDED Write the first four terms of two different arithmetic sequences with a common difference of -3 . Write an equation for the nth term of each sequence.
52. THOUGHT PROVOKING Describe an arithmetic sequence that models the numbers of people in a real-life situation.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Solve the inequality. Graph the solution. (Section 2.2)
58. $x+8 \geq-9$
59. $15<b-4$
60. $t-21<-12$
61. $7+y \leq 3$

Graph the function. Compare the graph to the graph of $f(x)=|x|$. Describe the domain and range. (Section 3.7)
62. $h(x)=3|x|$
63. $v(x)=|x-5|$
64. $\mathrm{g}(x)=|x|+1$
65. $r(x)=-2|x|$

